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FOREWORD

This final report presents work conducted for the Marshall Space Flight Cen-

ter (MSFC), National Aeronautics and Space Administration in response to the

requirements of Contract NAS8-36551. The work presented here was performed

by REMTECH, Inc., Huntsville, AL, and is titled "Boundary Layer Simulator

Improvement."

The project manager for this project was Dr. Sarat C. Praharaj. The project

was very much aided by the helpful technical support of the NASA contract mon-

itor, Mr. Klaus Gross, and by Mr. Alfred Krebsbach, both of the Performance

Analysis Branch of the Propulsion Systems Division.
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Section 1

INTRODUCTION

BLIMPJ [1] has been identified by the propulsion community as the rigorous

boundary layer program in connection with the existing JANNAF reference pro-

grams such as ODE, ODK and TDK-BLM, all in Ref. [2]. The improvements

made to BLIMPJ and described in this report have potential applications-in the

design of the future Orbit Transfer Vehicle (OTV) engines. These engines will

utilize a high chamber pressure expander cycle operation mode which primarily

depends on the heat energy transmitted from the combustion products through

the thrust chamber wall. The larger the regenerative heat transfer, the higher the

chamber pressure, which, in turn, permits larger area ratio nozzles and thus, bet-

ter performance. The heat transfer to the nozzle wall is affected by such variables

as wall roughness, relaminarization and the presence of particles in the boundary

layer flow. The motor performance loss calculation for these nozzles with thick

boundary layers is inaccurate using the conventional JANNAF procedure. Thus,

engineering procedures are required to model these effects adequately.

The first phase of this work was completed in December 1984 [3], after which

a presentation summarizing the results was made at the JANNAF combustion

meeting in 1985 [4]. Simplified analytical formulations were identified in Ref. [3]

to include the effects of wall surface roughness, relaminarization, condensed phase

and thick boundary layer in the current JANNAF thrust chamber boundary layer

skin friction and heat transfer calculation procedure. These effects will exist in

the operation of the projected high area ratio OTV engines. During Phase I,.it

was recommended that the turbulence models existing in BLIMPJ be updated

in order to account for wall roughness and relaminarization, whereas engineering

approximations were given to include condensed phase effects in the boundary

layer. While conducting these studies, several assumptions were made with regard

to wall boundary conditions and their effects on the turbulence models. In addition,

a semi-automatic procedure was devised for calculating the thrust decrement in

thick boundary layers having normal pressure gradients and transverse curvature

effects. The objectives of this work concentrated on extending the applications

of the previous modules, and relaxing the analytical limitations to permit more

realistic wall and flow conditions. Some of these required modifications of the

turbulence models have already been coded in BLIMPJ [3]. An additional objective

of this effort was to conduct experimental feasibility studies to find out how to

1
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obtain quality test data with advanced instrumentation for concept verification

purposes.

This report is divided into seven distinct sections. Following the introductory

section, Section 2 validates the turbulence model to include the effects of wall

roughness and devises a way of treating multiple smooth-rough surfaces. Section 3

deals with prediction of relaminarization regions and combined effects of wall cool-

ing and surface roughness on relaminarization. A turbulence model to represent

the effects of constant condensed phase loading is given in Section 4. Section 5

describes a procedure for thrust decrement calculation in thick boundary layers

by coupling TDK and BLIMPJ and provides a way for thrust loss optimization.

Sections 6 and 7 identify potential experimental studies in rocket nozzles and the

required instrumentation to provide accurate measurements in support of the pre-

sented new analytical models. The modifications made to the turbulence models

and additions of engineering models in BLIMPJ are summarized in the Appendix.

2



F:::_::r,,.,4'-r-lE:_ _ RTR 161-01

Section 2

WALL ROUGHNESS

2.1 Background

The importance of wall surface roughness in increasing the resistance to fluid

flows has been recognized for years. One of the principal parameters influencing the

skin friction and the surface heat transfer to a rough wall is the roughness height,

k. The early correlations which used this parameter to modify the turbulence

model due to the presence of roughness or those which used this parameter in the

engineering approaches missed the effects of roughness shape, pattern and density.

However, one of the recent correlations which modeled the surface roughness by

accounting for the roughness shapes was developed by Dirling [5], who applied it

to the prediction of nosetip shape changes. In modeling the effects of roughness

on skin friction, the boundary layer velocity profile was correlated with surface

roughness of sand. Empirical correlations have been developed for other types of

roughness elements to obtain the equivalent sand roughness. Dirling's concept is

based on locally similar boundary layer consideration.

In the previous work of Praharaj et al. [3], simplified correlations appropriate

for rocket nozzle applications were coded in the BLIMPJ computer code. A total of

three roughness options, including two engineering options and one exact option,

were coded. The first two options perform "point" calculations, whereas the third

option simulates the effects of a rough wall on the boundary layer and accounts for

"history" effects in the boundary layer. The concept of equivalent sand roughness

was used in all the above options. Since a very small data base exists for rocket

nozzle applications, some of these options were checked for external flow situations.

All three options were utilized for the projected generic OTV nozzle to check their

consistency.

2.2 Roughness Turbulence Model Validation

A literature survey was conducted to validate the roughness formulation. One

of the few references on nozzle test data including surface roughness was due to

Reshotko et al. [6] conducted at NASA LeRC with hot air (To = 970°R) in a 60 ° -

15 ° half-angle conical nozzle (Fig. 2.1). In contrast, much more data on roughness

3



effects are available for pipe flow in the literature. The LeRC test considered a

matrix of test conditions involving various chamber pressures varying from 30 to

300 psia, yielding an order of magnitude range in Reynolds Number and three

levels of RMS roughness heights: RK=120 #, 175 #, and 325 # (all in inches).

TDK was first run using the geometry and test conditions given in Fig. 2.2

to compute the distribution of wall pressure to compare with measured pressures.

The comparison given in Fig. 2.3 shows excellent agreement throughout the nozzle

except at the throat/15 deg divergence cone juncture, where the pressure slope is

noticeably discontinuous. Also note that the second derivative of the wall geometry

is discontinuous here. BLIMPJ was then run for Pc = 300 psia using the above wall

pressures and measured wall temperatures. It was immediately discovered that the

value of Ree was much higher than those in the relaminarization regime. Thus,

it was not necessary to turn on the relaminarization flag. A significant problem

arose in the accuracy of computed heat transfer with the use of wall temperatures

higher than approximately Tw = 660°R. These inaccuracies are attributed to the

deficiencies in the numerics employed in BLIMPJ. However, as AT (= To - Tw)

becomes high, as is the case with most rocket engines, these inaccuracies vanish.

Thus, in the current application, whenever Tw was higher than 660°R, it was

equated to 660°R. This modification has been found not to significantly affect

the computed values of heat transfer coefficient (h) for air so long as the wall

temperatures are not too far different from the measured values, h was computed

in accordance with the procedure adopted in Ref. [6] as follows:

h= 4
Haw- Hw (2.1)

where Haw "- He + prl/3(Ho - He) for turbulent flow

with Pr = 0.71

The roughness turbulence option was exercised for both smooth and all rough

wall situations, from which the smooth wall and RK = 120 #, 170 # and 325 #

wall data are plotted in Figs. 2.4 through 2.7, respectively. It is seen from Fig. 2.4

that the data are turbulent over the whole nozzle. The rough wall computations

yielded higher heating than the smooth wall over most of the nozzle, as seen in

Figs. 2.5 through 2.7. The comparison with BLIMPJ is only reasonable around the

nozzle throat. It is our current opinion that these discrepancies may be partially

attributed to the heat-transfer measurement accuracy (within 10 percent) and the

accuracy (4- 10 percent) of the roughness height measurements. Also, it is not

clear from the data in Ref.[6] whether or not the authors quote the "equivalent

4



sand roughness" values for RK. Depending on the size, shape and density of the

roughness elements, the R K values have been shown in Re£[3] to vary a great deal.

2.3 Treatment of Multiple Sections with Smooth/ Rough

Wall Surfaces

Variable roughness on the nozzle wall could be a result of differential heating

load on various sections of the wall or due to the use of ablating surfaces in sections

of the nozzle wall. It could also occur if the particles in the flow deposit on

the nozzle wall. The three options coded in BLIMPJ to calculate the effects of

roughness will behave differently if the roughness parameter is turned on or off. The

two engineering options which perform "point" calculations will show discontinuity

in skin friction and wall heating calculations at the point where either roughness

of the wall is introduced into the calculations or roughness of the wall becomes

negligible. In contrast, the method of Cebeci and Chang [7] used in the third

option modifies the length scale in the inner region of the boundary layer due

to the presence of roughness and is believed to smooth the effects of transitions

between rough and smooth sections.

Modifications to the BLIMPJ computer code were made adding a variable

surface roughness option. This new option permits the user to input a table of

equivalent sand roughness heights versus normalized nozzle axial coordinates. This

table is input as part of the namelist inputs and consists of an option flag and two

arrays dimensioned to 20. With this option, a roughness profile can be defined

over the complete length of a nozzle.

The OTV nozzle check case was used to examine the results obtained when

the variable roughness option is used with the Cebeci-Smith roughness option in

BLIMPJ. Figure 2.8 shows the heat flux distribution in the OTV nozzle wRh

two regions of roughness. Figure 2.9 shows an expanded view of the first region of

roughness and Fig. 2.10 shows an expanded view of the second region of roughness.

It can be observed from Fig. 2.9 that the "history" effects of introducing wall

roughness at a certain location persist downstream of the roughness and blend into

the smooth wall value after a certain distance. This sample case with two regions of

roughness required four values of equivalent sand roughness to define the roughness

profile in the nozzle. With 20 values available, a wide variety of roughness profiles

can be defined. Figures 2.11 and 2.12 show the heat flux distribution in the throat

region where variable roughness was introduced. From these figures it can be seen

that the heat flux does not maintain the slope of the heat flux distribution as it

does in the other regions of the nozzle. The cause of this is not clear_ except that

it falls in a region of increasing heating rate to the left of the throat and decreasing

5
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heating rates to the right of the throat.

In order to check the previously coded roughness options with measured data

in internal flow situations, a reasonable literature survey was performed and the

relevant data collected. As far as checking the effects of partially rough and par-

tially smooth surfaces on heat transfer and skin friction, some data were discovered

in Ref. [8]. The test was on a 40k subscale regeneratively cooled thrust chamber

(Fig. 2.13) at MSFC to conduct cycle life tests. During the test it was discovered

that the test section was becoming rough and the heat load was going up during

testing. Polishing the tes_ section at the end of a run helped bring down the heat

load. Measured heat load data are given in Fig. 2.17 where the effects of polishing

the surface are clear. The wall pressure distribution (Fig. 2.14) was obtained by

running the available version of TDK, where a small discontinuity in pressure is

observed at the nozzle throat. Comparisons of the data are made in Figs. 2.15

and 2.16 with BLIMPJ output using roughness values of RK "- 45 #in. in the

combustion chamber and the throat region, and RK = 20 #in. in the divergent

part of the nozzle. The analytical model gave a delta percent heat load between

the smooth and variably rough wall runs, which was plotted in Fig. 2.17. The

validation of the analytical model is quite good.

6
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Figure 2.17: Heat Load Summaries for Chambers 1 and 2 and Comparison with
BLIMPJ Prediction
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Section 3

RELAMINARIZATION

3.1 Background

The prediction of relaminarization phenomena remains as one of the strongest

tests of validity of the turbulence models existing in the literature. Relaminariza-

tion is basically a reversion from turbulence to laminar boundary layer, principally

caused by severe flow acceleration effects. The original experimental work by such

investigators as Launder [9], Patel et al. [10], Back et al. [11], and Nash-Webber [12]

serves as the basis of understanding such a phenomenon. The work of Patel et al.

concentrates on the large departures of the inner-law velocity distribution in the

presence of severe favorable pressure gradients in the turbulent boundary layers.

Launder et al, on the other hand, emphasize the measurements of turbulence and

mean velocity profiles, and cover the complete reversal of the transition process.

In the measurements by Back and Cuffel [11], and Reshotko et al. [6], a reduction

in heat transfer was observed below values typical of a turbulent boundary layer

was for regions of the nozzle where the flow acceleration is high. In these earlier

works, a threshold value of acceleration parameter K = (tte / peU2e) (dUe / d;c) of

2 to 3 x 10 -6 was used to trigger laminarization. The shortcoming of such an

approach lies in defining a degree of laminarization as the boundary layer makes

a transition from turbulent to laminar flow as the flow accelerates in the nozzle.

Attempts were made by investigators such as Hodge and Adams [13] who used the

k - • turbulence model in an accelerating flow and achieved reasonable correlation

with data. However, the thrust of the current work has been to develop an en-

gineering model to update the existing turbulence models in BLIMPJ. Attempts

were made in Ref. [3] to utilize the experimental data of Nash-Webber, which is

one of the best-documented experimental investigations of compressible boundary

layer. However, the application of the developed criterion [3] was found to be only

approximate when validated against measured data. The objective of this effort is

to modify this criterion to apply to more general problems.

The modified acceleration parameter due to Nash-Webber is defined as,

#w due (3.1)
Kw = PwU_ dz
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where W and e denote wall and edge conditions, respectively. This parameter is

distinctly different from the previous one in that both wall and edge quantities

are considered here. Kw is affected by both acceleration in the inviscid boundary

layer edge and wall conditions. The curve-fit recommended in Ref. [3] to define

the threshold for the onset of relaminarization is given by,

Kw = a R 2 +b R +c (3.2)

where a = 8.935 × 10 -14

b -- 2.239 x 10-1°

c = 1.0248 x 10 -6

and R is Reynolds Number defined by,

Ree - Pe Ue _ (3.3)

#w

The definition of Reynolds number here is somewhat different from its usual

one. Nash-Webber cites this form to be most logical for the needs of the problem

under consideration. The upper limit of the relaminarization process where the

turbulence production is fully suppressed, was put at Kline's suggested value of

3.5 × 10 -6. (Fig. 3.1)

Since this criterion worked only approximately for the Back and Cuffel nozzle

data as shown in Ref. [3], the original report of Nash-Webber was closely examined.

The following facts and suggestions were revealed:

1. The Nash-Webber correlation was valid for adiabatic wall condition.

2. The transition line should be moved down for cooled walls, i.e., it is easier

for turbulent flow to laminarize on cooled walls.

3. It should be moved up for rough walls, i.e., the phenomenon is the opposite

of cooled wall flow.

3.2 Effects of Wall Roughness and Strong Regenerative

Cooling

3.2.1 Effects of Wall Cooling

It is extremely difficult to locate appropriate data to quantify the effects of wall

cooling on relaminarization. One set of data was available in Ref. [6]. The data
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available for Pc = 75 psia and 30 psia from smooth wall conditions in this work are

candidates for establishing the appropriate limits for the transition regime. The

experimental data taken on the 60°-15 ° half-angle conical nozzle were obtained

for three levels of chamber pressure: 30, ?5, and 300 psia. In the previous sec-

tion the high pressure condition has been shown to be turbulent over the whole

length of the nozzle. The high chamber pressure yields a high enough momentum

thickness Reynolds Number that the flow remains turbulent, even though the flow

acceleration is quite high. However, as the chamber pressure was reduced by an

order of magnitude, the initially turbulent boundary layer does not stay turbulent

as the flow accelerates. Figure 3.2 compares the measured heat transfer levels at

four roughness levels for each of the chamber pressures, Pc - 30, and 75 psia sep-

arately. Figure 3.3 compares fully turbulent prediction, fully laminar prediction

and measured heat-transfer coefficients distribution over the length of the above

nozzle for Pc = 30 psia. It is seen that the data line is between the turbulent and

laminar distributions. Although the data is originally turbulent, it comes closer

to the laminar prediction as the flow accelerates. The relaminarization flag was

turned on to observe the effects of acceleration, but the prediction was far from

satisfactory, indicating that the limits of laminarization, previously coded, were

inadequate.

The report of Nash-Webber was examined to check the above limits. It was
discovered that his turbulent-laminar transition limit was based on adiabatic wall

condition. However, this report recommended modifications to be made for cooled

wall. Therefore, a study was undertaken to quantify these modifications by com-

paring against measured data. To establish these limits, the measured data were

compared against fully turbulent and fully laminar computations. This exercise

showed where transition from laminar to turbulent or turbulent to laminar flow

took place. The next thing was to obtain the Kw -/tee trajectory of the flow as it

accelerates through the nozzle. Now, if the data showed that it remained laminar

throughout, no upper limit of laminarization on Kw could be obtained from tl_is

set of data. In fact, this was true of the smooth-wall data for Pc = 30 psia, as can

be seen in Fig. 3.3. Because of" high flow acceleration in the nozzle entrance for the

LeRC 60 ° - 15 ° half-angle conical nozzle (Fig. 2.2), almost all the data, including
this set, laminarized at the nozzle inlet and some made transition to turbulent flow

depending on Reynolds Number and the corresponding acceleration parameter. It

was necessary to examine the Pc - 75 psia smooth-wall data (Fig. 3.2), where the

data seem to be on the verge of transition right around the throat. This supplied

the upper limit, Kw,,, which was assumed to be independent of Re0. However,

this set of data did not go all the way to the turbulent limit, and thus was unable

to supply a lower limit, Kwz. This data point is represented by a circular symbol
at Kr - 0 in Fig. 3.5.
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3.2.2 Effects of Surface Roughness and Wall Cooling

Examination of the 60 ° - 15 ° half-angle nozzle data showed that the presence

of roughness slows relaminarization and as the roughness increases_ the transition

to turbulent flow occurs earlier on the nozzle wall. It was very quickly discovered

that the limits of Kw, established in Section 3.2.1, for the cooled wail situation

were invalid for walls containing surface roughness. These limits somehow needed

to implicitly depend on surface roughness height.

It is well known in the literature that the effects of roughness and accelera-

tion on wall heat transfer are opposite in nature. Computations were made using

the Pc = 30 psia case with a given roughness height of 325 y in RMS. By con-

sidering purely turbulent and laminar boundary layers separately and comparing

against measured data in Fig. 3.4, it is found that the data is basically turbulent

throughout the nozzle. This observation is somewhat different from that made

in the above report [6] where this data was considered transitional in the region

upstream of the nozzle throat. When the relaminarization flag was turned on, it

yielded lower values for heat-transfer coefficients, thus indicating that the coded

limits of relaminarization are inadequate.

The work of Coleman, Moffat, and Kays [14] throws some light on this by

defining a new parameter called the "Roughness Acceleration Parameters" K,, in

the following way:

Ko dUe (3.4)•

The measured data from the above test were correlated for various Kr values

using the procedure described in the previous subsection. It was possible to find

both the transition limits from appropriate sets of this data undergoing transition

from laminar to turbulent flow and_ finally, reaching the turbulent level. All these

data were correlated in Fig. 3.5, where the symbols Q and [] represent data from

Pc = 75 and 30 psia_ respectively. The Pc = 300 psia did not provide any useful

information in this plot since the Reynolds Numbers are much larger in magnitude,

resulting in practically no laminar flow along the nozzle. Straight lines were drawn

as approximations through the data to analytically represent the correlation. It

should be pointed out that the lower curve represents only the constant 'c' in

Eq. 3.2 and that the quadratic nature of Kwl was still maintained. In other words_

knowing the value of Reo and Kw_ where the transition to complete turbulent flow

takes place_ the constant 'c' representing Kwz at Ree - 0 is obtained from this

equation. These correlations were then coded in BLIMPJ.
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3.3 Concept Checkout

To illustrate the use of the correlations developed earlier, BLIMPJ was run for

the three following cases for the same nozzle, by turning on the relaminarization

flag:

1. Pc = 30 psia

Smooth Wall

2. Pc = 75 psia

Ka = 325/_ in RMS

3. Pc = 75 psia

K, = 120/z in RMS

Figure 3.6 (Case 1) shows that the data is basically laminar throughout the

nozzle until the calculation tends to be turbulent at X/RT _ 0.5. This is only

artificial, since the acceleration parameter jumps down because of a pressure slope

discontinuity (Fig. 2.3) given by TDK at the throat/nozzle juncture. Figure 3.7,

on the other hand s represents Case 2 where the data are seen to be turbulent

throughout the nozzle. The next case (Fig. 3.8) is more interesting in that the

flow makes a transition from the laminar to the turbulent regime in the presence

of wall roughness and finally becomes fully turbulent downstream of the throat.

The variation of Kw and Ree with z for this case is given in Fig. 3.9, whereas

Fig. 3.10 shows a cross-plot of Kw and .Re8 (Rw - Ree trajectory of the flow)

along with the upper and lower limits of transition. The heat-transfer prediction

for this case as given in Fig. 3.8 seems to be only approximate, and fine-tuning of

the transition-limit correlation is necessary to improve the BLIMPJ prediction.

Since the transition-limit plot was derived from a limited set of data, the cor-

relation must be used with caution. In order to make the correlation complete,

much more data must be examined and the correlation updated. The current work

provides only a guide for engineering calculations. One quick glance at the Back-

Cuffel data [11] which was examined by the current authors [3] shows that the use

of this correlation would, in fact, lower the prediction to a laminar level and would

compare much better with their measured data.

3.4 Impact of Free=stream Turbulence

Free-stream turbulence in liquid rocket nozzles is caused by the violent mixing

at the injector and by the explosive burning of the fuel-oxidizer mixture in the
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combustion chamber. The role of free-stream turbulence in gas-turbine systems

has long been recognized and has been measured in certain situations. These

studies indicate that the primary effect of an increase in free-stream turbulence

is the upstream movement of the onset of transition. The effects of free-stream

turbulence on turbulent boundary layer profiles have been found by others to give

slightly fuller profiles and higher turbulence levels, resulting in higher momentum

thicknesses, smaller form parameters, and increased heat transfer as well as skin

friction coefficients. In analyzing the combined influence of free-stream turbulence

and pressure gradient, it has been shown for nearly isothermal flows that the sign

of the pressure gradient is of dominant importance. Adverse pressure gradients

promote the onset of transition, whereas favorable pressure gradients stabilize the

boundary layer and thus counteract the effect of free-stream turbulence. In the

rocket nozzle situations, where relaminarization is a possibility because of high

favorable pressure gradients, free-stream turbulence will delay relaminarization.

More recently, tiuffman et al. [15] and Charnay et al. [16] have measured in

detail the effects of free-stream turbulence upon both the mean and fluctuating

components of velocity within a turbulent boundary layer. These measurements

show very clearly the extremely large effect of free-stream turbulence upon the

turbulent transport in the outer region of the boundary layer, tiuffman et al.

observed as much as a sixfold increase in the conventionally defined Prandtl's

mixing length in the center region of the boundary layer with about 5 percent

free-stream turbulence. Examples of measurements and predictions by McDonald

et al. on a fiat plate with constant pressure in the streamwise direction are given in

Ref. [17], where the effects of free-stream turbulence on skin friction, streamwise

velocity, mixing length, turbulent kinetic energy and Reynolds shear stress are

clearly seen. The investigation by F[odge and Adams [13] also considered the

effects of free-stream turbulence in their Integrated Kinetic Energy of Turbulence

(IKET) approach.

An experimental investigation carried out by Rued and Wittig [18] shows the

effects of free-stream turbulence both in zero and negative favorable pressure gra-

dients. The Reynolds analogy, 2 • St/Cy, is shown to be largely independent of

the turbulence level. The analogy factor is observed to be constant with a mean

value of 1.1, which leads to the conclusion that heat transfer rates increase in the

same amount as the skin friction coefficients, at least in the case of zero pressure

gradient. It can also be said from the work of Ref. [18], without reproducing their

results of measurements here, that favorable pressure gradients tend to laminar-

ize the turbulent flow, whereas free-stream turbulence tends to oppose the above

effects.

In the current BLIMP,/framework, a lot of simplifications had to be made to
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integrate the effects of free-stream turbulence into the algorithm. The relationship

between turbulence intensity and Reynolds shear stress has been dealt with in

various references including Hodge and Adams [13]. The proportionality between

these two quantities depends on whether one is considering the inner or the outer

layer and also on the nature of the boundary layer, incompressible or compressible.

Roughly speaking, for isotropic turbulence

u' v' = ¢ u (3.5)

where the correlation coefficient, ¢, is approximated to be -0.45. The free-stream

turbulence level, Tu, is given by,

T,, = -- (3.6)
Ue

Thus, from Eqs. 3.5 and 3.6,

-7-7u v )Boundary Layer Edge= (3.7)

This was converted to an equivalent EPSA (- p2e/peize) value in subroutine

TRMBL with the proper non-dimensionalization at the boundary layer edge of

each station. The OTV nozzle was used as a test ease for UeT,_ = 200. Since Ue

increases continuously in the nozzle as the flow expands, the value of T, drops

off from 107.0 percent at the inlet to 1.24 percent at the nozzle exit, as shown in

Fig. 3.11. The variation of EPSA is given for stations 6, 12, and 20 in Figs. 3.12,

3.13 and 3.14, respectively. As clearly seen, the effects of free-stream turbulence

(with their magnitudes shown in Fig. 3.11) are much more significant in the EPSA

profile for Sta. 6 compared to the other two stations. Wall shear stress values are

plotted in Fig. 3.14, whereas ATAUW is plotted in Fig. 3.16. No validation could

be made because of lack of relevant available data. However, the increase in shear

stress at the wall due to free-stream turbulence is apparent. Similar plots were

made for heat transfer rates in Figs. 3.17 and 3.18. The disturbing negative values

for AQDOT in Fig. 3.18 are attributed to the "non-convergence" of the solution

at Sta. 3 and its effects on the subsequent two stations. It is believed that this

"non-convergence" occurred because of high T,, values in the first few stations in

the BLIMPJ run.

The approach described above, even though innovative, must be checked out

against other codes and any available data before it can be used as a reliable

engineering tool.
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Section 4

EFFECTS OF CONDENSED PHASE

4.1 Background

The study of the boundary layer flow containing particles is of special interest

to the rocket engineer because of the influence of the particles on the wall shear

and heat transfer, the possible tendency of particles to collect near the wall and,

ultimately, to cause a performance loss in the thrust chamber. Typical data in

chemical engineering literature, correlated in terms of voidage, show that there

is little effect caused by solid particles until the volume percent of solids reaches

about 0.05 percent, and a marked increase occurs in heat transfer for higher solids

loading. Correlation of gas-particle heat transfer in terms of solids loading and,

sometimes, tube diameter (for pipe flow) is not entirely satisfactory, however, since

such correlations ignore the effects of particle size.

Studies of the interaction of walls with a gas-particle turbulent flow have been

accomplished by Tien [19], and Soo and Tien [20]. Tien [19] analyzed the in-

creases in heat transfer in the fluid-particle system assuming incompressible, con-

stant property flow with no radiation or velocity layer effects and no effect of the

particle on the gas flowfield. In this case, there is no increase in the asymptotic

or downstream heat transfer rate, but there is an increase while the flow is de-

veloping. Since this is similar to what happens in the expanding flow section in

the rocket nozzle, the above results were coded in BLIMPJ [3]. It must be noted

here that this formulation is valid up to a solids-to-fluid mass loading ratio of

unity. The limited data taken by Farbar and Morley [21] showed that for solids

loading ratios greater than unity, heat transfer to the wall increases rapidly. The

solids affect both the gas boundary layer and the heat capacity of the flowing mix-

ture. The empirical results derived from this work were also coded in BLIMPJ

for rocket nozzle applications. Since small portions of the rocket nozzle contain

laminar boundary layer, some of the laminar boundary layer correlations based on

momentum integral approach were also coded in the existing version of BLIMPJ.

All the above formulations were used as a separate module which is called at will

by specifying the appropriate flag in the name-list input.

Since the 0TV nozzles will be designed to operate at very low ambient pressures

and flow will expand very rapidly in the nozzle, there is every likelihood of forming a
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two-phase fluid cntaining liquid droplets and ice particles in the nozzle. Depending

on the size of the particles, a fraction of the smaller sized particles will flow in the

boundary layer, whereas most of the larger sized particles will flow in the axial

region. It is also very likely that the particle sizes will vary along the wall in the

boundary layer, as the flow expands down the nozzle. How the particle loading will

affect the skin-friction and heat transfer characteristics at the wall is the subject

to be investigated in this task.

The H2-O2 propellant system which will be used in the projected OTV engines

could produce ice particles in the expansion section of the nozzle. Since these

nozzles will have high area ratios, the expansion process will cool the gas which

is mostly water vapor and the static temperature will be low enough to freeze the

vapor and form ice particles. More and more ice particles will form as the gas flows

through the expanding nozzle. It has been found from studies on these high area

ratio nozzles, which are regeneratively cooled for part of the nozzle and radiation-

cooled for the last portion of the nozzle, that heat transfer drops off drastically

downstream of the throat and is almost negligible a moderate distance aft of the

throat. So, the formation of water droplets and ice particles occurring in this part

of the nozzle might not greatly impact the magnitude of heat transfer and skin

friction. However, the presence of particles in the boundary layer would change the

displacement and momentum thicknesses and, in turn, would alter the boundary

layer losses in the performance of the thrust chamber.

It must be noted here that the effects of particles in nozzle boundary layers have

not been treated extensively in the literature. The kind of work that exists usually

refers to pipe flow problems. The "history" effects of the particles in boundary

layer are very scarcely treated. As a consequence, only engineering approaches

were implemented in the BLIMPJ update work in Ref. [3], where no modifications

were made to the turbulence model.

If the loading of condensed phase changes as the flow expands in the nozzle,

the laminar boundary layer formulation would be affected only by the species con-

centration effect. If the flow is turbulent, the formulation given for the turbulent

boundary layer should be used. This formulation, derived from empirical consid-

erations, depends on the condensed phase loading and should be used to yield

skin friction and heat transfer quantities at the nozzle wall. The practical speci-

fication of this loading is not necessarily straightforward. It is difficult enough to

produce a certain size particle and a certain loading externally with the help of

a particle generator and supplying it to the nozzle flow. It is much more difficult

a matter to be able to quantify the solids loading in various areas of the nozzle

including the boundary layer. In the case of the high area ratio nozzle, where these

condensed phases would appear in varying loading, theoretical and experimental
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methods must be devised to quantify the loading, and the empirical and analytical

approaches suggested below should be used to effectively quantify boundary layer

losses.

4.2 Turbulence Model Representation for Condensed Phase

Loading

Soo and Tien [20] considered particle motion in a turbulent fluid stream with

emphasis on the effect of wall interference. The intensity of the particle motion was

found to always be less than the intensity of the fluid motion and is reduced further

by the wall interference effects. However, with respect to the core or mainstream

intensities, the particle motion near the wall can have a high intensity because of

the corresponding high local intensity of fluid motion near the wall.

Heat transfer will be affected at the wall because of the following two significant

effects due to the presence of particles in the boundary layer.

1. The eddy viscosity in the boundary layer is expected to fall below its clean

flow value because of particle loading in the boundary layer.

2. The specific heat of the two-phase flow will be modified because of the load-

ing, resulting in a change in heat transfer to the wall.

For small particles, it has been shown by Soo and Tien [20] that the particle

diffusivity is of a similar order as the eddy diffusivity of the stream. Thus, the

turbulence model needs no modification. However, the particle loading effect which

was considered by Tien [19], and Farbar and Morley [21] has been reported by

Praharaj [3].

A review of the literature on the fluid dynamics of solid particles in multi-phase

systems showed different and incomplete approaches to the problem of the motion

of various size particles near the wall of a turbulent fluid. In the work of Soo [22] a

specific expression for the ratio of particle diffusivity to eddy viscosity was found as

a function of particle diameter, density, Reynolds Number (based on fluid stream

turbulent intensity) and turbulence microscales. This expression is based on the

analysis of the "probability of encounter for finite-size particles." The final steps

for calculating the ratio of diffusivities are summarized below for completeness.

Assuming that the Reynolds Number based on relative velocity between the

particle and its surrounding fluid is small enough so that particle drag is given by

Stokes' Law, the particle diffusivity, Dr, , can be defined by the equation:
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lira 1
Dv = t--.oo _ E {y2 (t)} (4.1)

where E {y2 (t)} is the mean square particle displacement and is given by the

following equation:

lim ,2 2 < u > A.2 6 1
t--_- + 0 (4.2)

,2 >1/2where < u is the intensity of fluid stream turbulence,

,2 >1/2 (4.3)A*= AL/< u

F = 67rr v#/ m v , (4.4)

and A/; and AE are the Lagrangian and Eulerian microscales of stream turbulence,

respectively. Thus,

,2 A* A*2< u > 1 6 (4.5)
Dp=<u > 1- A_ FA* FA*+I

The fluid diffusivity (eddy diffusivity) obtained from the Taylor formula, using

the Lagrangian correlation coefficient, is

,2 ,2 >1/2DI=A*<u >: AL <u (4.6)

Then, the ratio of particle diffusivity to eddy diffusivity may be written as,

n2

D! A2 FA* FA*+ 1 + O (4.7)

Introducing the impulse response parameter I,

2
I = -- (4.8)

FA*

The parameter I is defined as the ratio of particle impulse response time to the

time a fluid particle remains in a velocity correlated region. For spherical particles,

this parameter can be written as,
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(4.9)

where

= '_ >1I_ (4.10)<N_> (_',,/,,,)<u

is the particle Reynolds Number. Upon substitution of Equations 4.3 and 4.8 into

Equation 4.7, the ratio of particle diffusivity to eddy diffusivity becomes,

D,_ 1 A_ (3I 2 )D--I- -A_ \/:+2 +0 (AI-_E) (4.11)

Within the context of the BLIMPJ algorithm using the algebraic eddy viscosity

models, the following simplifications and assumptions were made.

From Soo [22], AE was considered to be the radius of a pipe containing the

two-phase flow. In our case, AE was assumed to be equal to the local boundary

layer height, 6. Since the turbulence intensity is not calculated in BLIMPJ as it is

done with a k - e turbulence model, certain simplifications had to be made. The

eddy contribution to the shear stress is

du

-p ,,',,'= -,-- __ (4.12)
ay

From Schlichting's book, the shear stress is related to the turbulence intensity

by a correlation coefficient, ¢, given by

¢ = ,, v'/,,' (4.13)

From a limited set of data, ¢ was approximated to be -0.45. Then, from Eqns.

4.12 and 4.13,

(u"--) 1/2 __ [e r / 0.45(# + pe)] 1/2 (4.14)

where e is the kinematic eddy viscosity. Since the problem usually is to obtain the

ratio in Eq. 4.11 for a given particle loading, it is essential to obtain an equivalent

size spherical particle at a given point in the boundary layer. Particle loading is

given by

Wp pp np vp

ws Ps
(4.15)
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Particle mass flow rate in an elemental ring located at radius, r, of width, A y,

Ibm (4.16)
= (2_rr)(Ay) (Pmix) (MFp), ft

This is also equivalent to the width of the particle phase ring, _, which

lbm (4.17)= ft

From Eqns. 4.16 and 4.17,

-5-- np Vp Ay (4.18)

This formulation must be considered approximate since, clearly, _ is not the radius

of an equivalent sphere. A more detailed analysis is necessary for computing the

diffusivity ratio in such a situation.

The significance of various terms in Eq. 4.11 is dealt with in Ref. [22]. For a

fixed AL/AE and small particle impulse response, I, a solid particle "follows" the

fluid motion perfectly, and its diifusivity is equal to the fluid diffusivity. However,

for a fixed AL/AE, a solid particle with large I does not respond to the fluid motion;

it tends to remain stationary and not diffuse.

In order to correlate the diffusivity ratio with the eddy viscosity, one can assume

constant turbulent Schmidt Number. Consequently,

p eD

or,

ep __ eDp (4.20)

e e D

This was coded in a subroutine called PARTCL2 and integrated in BLIMPJ.

4.3 Concept Checkout

In order to check out the turbulence model coded for the presence of particles

in the boundary layer, the OTV nozzle configuration (Fig. 4.1) was chosen. As an

example, Aluminum was chosen to be the particle material present in the boundary
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layer. The particle loading (PLOADING) was chosen to be Wp/Wf = 0.5 in the

whole boundary layer and BLIMPJ was run by turning on the particle option,

IPART=2. (The particle option, I-PART=l, uses an engineering approach [3].) As

discussed in Sec. 4.1, the major effects of the particle presence in the boundary

layer are due to the species composition and the damping effects. In order to

examine the former effect, TKP(3,J) in the input was chosen to be 0.3333, which

is equivalent to Wp/Wf = 0.5, and ]:PART was set to zero in order not to call any of

the two particle subroutines corresponding to IPART=I and 2. Then, in addition

to the input above, a separate run was made with IPART=2. The boundary layer

thicknesses for these runs including a clean flow run are plotted in Fig. 4.2. The A1

content in the boundary layer alone reduces the boundary layer height because of

a reduction of total enthalpy of the system. The damping effects of particles in the

fluid further reduce the boundary layer height because of a reduction in turbulence

intensity. Figures 4.3 through 4.5 show kinematic eddy viscosity profiles at Stations

12, 41 and 48 (marked in Fig. 4.1). At the throat (Station 12), EPSA is reduced

almost down to zero, thus making the boundary layer almost laminar. However, at

stations 41 and 48, the boundary layer heights are seen to be lower than the clean-

flow values, but EPSA values are higher in the inner layer. These EPSA values,

however, are lower than those for the specie composition effects alone. Profiles of

the particle diffusivity ratios at these stations are plotted in Fig. 4.6, where, again,

the effects are maximum at the throat. The shear profiles for these stations are

given in Figs. 4.7 through 4.9, where reductions of shear are observed across the

boundary layer. Even though EPSA values are somewhat higher in the inner layer.

These EPSA values, however, are lower than those for the mixture effects alone.

Profiles of the particle diffusivity ratios at these stations are plotted in Fig. 4.6,

where, again, the effects are maximum at the throat. The shear profiles for these

stations are given in Figs. 4.7 through 4.9, where reductions of shear are observed

across the boundary layer. Even though EPSA values are somewhat higher in the

inner layer for Stations 41 and 48, the thinning of the velocity profiles causes the

velocity gradients to be lower at a higher rate than the increase in eddy viscosity,

thus resulting in lower shear values. Figure 4.10 gives the wall shear distribution

for no particles, the species mixture effect and the total effect including damping.

The curves are so close to each other in the scale given in this figure, a separate

plot was made in Fig. 4.11 to show the ATw between the no particles and the

total effect cases, where maximum reduction is seen to occur at the nozzle throat.

Similar comparisons were made for heat transfer rate in Figs. 4.12 and 4.13, where,

again, the maximum delta occurs at the nozzle throat.

In order to check the new particle option against any available data or any

available formulation, the previously coded particle option as chosen and was run

for a loading of 0.5. The comparisons of these two options are shown in Figs. 4.14
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and 4.15. The comparison is only approximate. More credibility, however, should

be placed on the "IPART=2" option, since it considers all the effects such as mix-

ture, damping and "history" effects. In contrast, the "IPART=I" option assumes

constant property flow in the boundary layer, does not consider damping effects

and does only "point" calculations.
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Section 5

THRUST DECREMENT CALCULATION

5.1 Background

The thrust loss calculation originally implemented in BLIMPJ [1] has been

modified by REMTECH in Ref. [3]. The modified procedure is particularly appli-

cable to the projected OTV engine nozzles with high area ratio. The boundary

layer size in such nozzles depends basically on:

1. Longitudinal wall curvature

2. Pressure gradient normal to the wall

3. Transverse curvature

4. Fluid stratification (density)

The first two items are related through the y-momentum equation. The gov-

erning boundary layer equations and their solution in BLIMPJ take into account

transverse curvature effects. The last item is a result of density gradients in the

boundary layer. In general, similarity cannot be satisfied in such nozzles with

all the above effects present. Fortunately, BLIMPJ does not assume similarity.

Three out of the above four effects were not accounted for in the original ver-

sion of BLIMPJ. Not only that, but the expression for the thrust loss calculation

did not include the consequences of these effects. So, in order to take these into

account_ an approximate procedure (in keeping with the philosophy of simplified

procedures) was implemented in Ref. [3]. In this procedure, the pressure which is

an input parameter to BLIMPJ was replaced by an average value of the pressure

distribution within the thickness of the boundary layer. The above approximation,

in effect, included the contributions of longitudinal curvature, normal pressure gra-

dient and fluid stratification to thrust decrement calculation. This procedure was

applied in Ref. [3] to a typical Orbit Transfer Vehicle (OTV) nozzle and was seen

to converge in the iteration procedure employed. Some of the assumptions made

in the iteration procedure are the following:

1. The average inviscid pressure obtained from TDK across the boundary layer

width is a reasonable value to be used in BLIMPJ to define the boundary

layer in the successive iterations.

72



-- F:_ t==-M-r- _==-C }-.4 RTR 161-01

2. The longitudinal curvature effect is only considered approximately through

the pressure averaging procedure.

In the previous work [3], all these assumptions along with other standard

boundary layer assumptions were made. It also provided procedures for calcu-

lating the performance of a rocket nozzle experiencing thick boundary layers for

the two different cases given below:

Case 1 - The potential nozzle contour is given and the objective is to define

the hardware wall contour.

Case 2 - The hardware wall contour is given and the objective is to define the

potential contour and calculate the nozzle performance.

The method had been checked out for the OTV nozzle using the procedure for

Case 1. It used RAMP [23] as the inviscid code to define the pressure profiles and

some of the pressure averaging was performed by hand. The current procedure uses

TDK instead of RAMP to define the inviscid flowfield and a code was developed

consisting of FORTRAN and control language to couple TDK and BLIMP,/ to

perform the iteration procedure in an automatic mode. The details are given in

the following subsection.

5.2 Coupling of TDK with BLIMPJ

Calculation of the thick boundary layer effects on thrust loss has been accom-

plished using the procedure shown in Fig. 5.1. The first step of this procedure is

to calculate the inviscid internal flowfield using TDK. As part of this procedure,

two factors must be considered when running TDK:

. Since the inviscid flowfield data need to be stored for the region where the

boundary layer exists, special care has to be taken in running TDK. The

extent of the flowfield calculations from the current TDK version is limited

by the last left-running characteristic line emanating from the initial Start

line, the nozzle axis or the shock, and ending at the nozzle lip. As a re-

suit, the streamline data throughout the boundary layer width at the exit

plane are not available. Thus, in order to compute this additional streamline

information, the nozzle must be extended for the input to TDK.

1 The size of the flowfield data file may be exceeded depending on the number

of start line data points and geometry of the nozzle. If this size is exceeded,

then the data file will be overwritten. To extend the size of the file, the
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variable IDMAX must be increased in the TDK input file (default: IDMAX

= 50,000).

Step two of the procedure is to run BLIMPJ to calculate the thickness of the

boundary layer. For the first iteration, BLIMPJ uses the wall pressures as an

approximation of the pressure distribution within the boundary layer. For every

additional iteration, BLIMPJ uses the integrated pressures generated by the Near

Wall Profile code (NWP) [24], written by the authors to couple TDK and BLIMPJ.

The third step in the procedure is to run NWP to calculate the thickness of the

boundary layer. The inputs to this code include the flowfield data file generated

by TDK, and the boundary layer thickness generated by BLIMPJ. The output of

NWP includes a streamline data file which is generated in the first iteration and

accessed by each successive iteration. This coupling logic which was written for

the VAX (and can be easily written for the CRAY) is reproduced in Fig. 5.2. The

operation of this software requires one-time inputs to both TDK and BLIMPJ.

Since the potential contour is given (Case 1), the hardware contour is obtained

from

RB -- Rp 4" 6* cos ¢ (5.1)

where RB is the hardware contour radius, Rp is the potential contour radius, 6* is

the converged value of the boundary layer and ¢ is local wall slope. The procedure

for Case 2 is well documented in Ref. [3] and will not be dealt with here.

5.3 Concept Checkout

The NWP code linking the outputs of TDK and BLIMPJ compiles the flowfield

data for the streamlines emanating from the start line profile, going across the

shock located in the flowfield and ending on the last left-running characteristic

line running to the extended nozzle lip; calculates pressure profiles at given x-

locations by interpolating on individual streamlines; and integrates the pressure

profiles and calculates average pressure values on the wall.

The OTV nozzle was extended at its exit plane in a conical fashion, keeping

the exit flare angle to be the same. The length of the nozzle needed to provide

streamline information within the boundary layer was X/RT "- 200, where the area

ratio was 2107.7. TDK was run up to this area ratio, yielding the streamlines shown

in Fig. 5.3. Figures 5.4 and 5.5 show, respectively, the calculations of the boundary

layer thickness distribution and of the pressure profiles in a direction normal to the
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axis between the nozzle wall and the boundary layer edge location based on the
information obtained from the streamline data. This is the first iteration. Since
the boundary layer edge is not known for a thick boundary layer, an iteration
procedure (Fig. 5.1) is required. Figures 5.6 and 5.7 represent the results for the
second iteration. Examination of the iterated average pressure values along the
wall in Fig. 5.8 and the thrust decrement due to the boundary layer in Fig. 5.9
shows that no more iterations are necessary.

In the above calculations the boundary layer thickness was measured from the

wall in a direction normal to the nozzle axis. Since it is more accurate to measure

the boundary layer normal to the nozzle wall, NWP was modified and the first

iteration was completed. The zeroth iteration in BLIMPJ utilized the inviscid wall

pressures from TDK and calculated boundary layer quantities including the thrust

loss. This boundary layer width was sufficient to show a variation of pressure across

the boundary layer region of the inviscid flowfield. Thus, an iteration was necessary

in BLIMPJ to use an average pressure across the boundary layer region obtained

from the streamline information output by TDK. The extent of the boundary

layer width in relation to the inviscid streamlines is given in Fig. 5.10. Note

that the boundary layer plotted here is measured normal to the wall. This is

the first iteration. Iterations continued until a convergence of the thrust loss was

achieved with a specified tolerance between successive iterations. Figure 5.11 shows

the boundary layer width plot in the second iteration. It is obvious that the

boundary layer thickened because of lower average input pressures at the wall.

The pressure profiles in the second iteration plotted on the projection o£ the wall-

normal boundary layer width on the Y-direction are given in Fig. 5.12. The average

pressure values along the nozzle wall for the inviscid wall pressure case and for the

two iterations are given in Fig. 5.13. It is also seen that the first and second

iterations are very close to each other. The reason for the unsmooth nature of

the curves for the last two iterations in the X/RT range of 6 to 32 is not very

clear. The thrust loss distributions along the wall are given for the zeroth and

second iterations as a function of area ratio in Fig. 5.14. It is seen that the

losses are reduced due to the convergence procedure. Figure 5.15, on the other

hand, gives the overall thrust loss of the nozzle as a function of the BLIMPJ

iterations and compares the results of the new method described here against the

more approximate method reported earlier. Method II, which is more exact than

Method I, shows somewhat more thrust loss, but quicker convergence. The thrust

area ratio distribution from ODE, ODK, TDK and actual calculations using this

procedure are given in Fig. 5.16.
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5.4 Thrust Loss Optimization

The concept of using a high area ratio nozzle in the projected OTV engine

stems from the fact that the specific impulse loss is minimized in such nozzles.

As the area ratio grows in magnitude, the two-dimensional losses become smaller

and smaller. However, as the area ratio increases, so does the friction loss. This

has been pointed out by numerous investigators. As a result, the exit area ratio

at which the inviscid thrust is maximum may be different from the area ratio at

which the actual thrust reaches a maximum.

The subject of thrust loss optimization must be considered during the design

stage. The desirability of improving on the "perfect" nozzle has been the subject

of various optimization procedures. One of those is due to Rao [25] where, given

the throat flow characteristics, nozzle length and ambient pressure, the procedure

provides a nozzle contour yielding maximum thrust. This optimization procedure

does not include the effects of wall friction.

The thrust loss optimization problem may follow the procedure given below:

.

.

3.

.

Calculate a series of potential nozzles using such procedures as implemented

in the Rao algorithm and others for various lengths. Each nozzle has a

different area ratio and an optimized contour.

Calculate the corresponding inviscid thrust for each nozzle.

Once the nozzle contours are available, thick boundary layer calculations

based on the procedure described earlier should be followed to define the

thrust loss, and final displacement thickness distribution along the nozzle

wall and the corresponding hardware nozzle wall contour. This defines the

thrust loss variation with area ratio for nozzles with optimum contours.

Optimize the resulting thrust ( = T inviscid - friction drag) with respect to

area ratio with possible length or structural weight constraints.

The above procedure must be considered preliminary at this stage. Other issues

such as structural design and other nozzle losses may play significant roles in this

optimization process.

It is well known that the gain of the ISP obtained by expanding the flow in

a high area ratio nozzle is limited by the boundary layer losses. It was seen in

Fig. 5.14 that as the area ratio increases, so does the boundary layer loss. Thus,

the area ratio must be optimized to yield maximum performance. A parametric

study was conducted for a typical high expansion area ratio nozzle such as the OTV
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nozzle. The only parameter chosen for the study was area ratio. The geometry of

the nozzle for each area ratio was assumed to be a part of the same overall high area

ratio nozzle. The thrust calculations shown in Fig. 5.16 were obtained from the

ODE, ODK, TDK and real thrust calculation algorithms. The differences between

ODE and ODK are due to the kinetic losses. The differences between ODK and

TDK are attributed to the two-dimensional losses. The thrust decrements due

to the boundary layer losses are given by the lower curve. Note that the thrust

decrement iteration procedure described earlier has been taken into account for

the lower curve.

The thrust loss optimization work performed so far was applied to the OTV

nozzle. The area ratios higher than the design exit area ratio were obtained by

extending the nozzle from the exit plane. The extended length of the nozzle needed

to apply the iteration procedure was at an area ratio, A/A* = 2500. BLIMPJ was

run up to this area ratio. The thrust loss distribution from the zeroth iteration

over the nozzle length is shown in Fig. 5.17. The abrupt change in slope of this

curve around A/A* = 1293 may be attributed to the abrupt change in the second

derivative of the nozzle area ratio with respect to axial distance. This also shows

the thrust loss variation with area ratio as a function of iterations as the solution

converges. The convergence required only three iterations to reach the tolerance

of 1 lb. thrust between iterations at the exit plane area ratio, A/A* = 1852.

Although the original intention was to run up to an area ratio of 2500 to obtain all

the needed profile information at the exit plane area ratio of approximately 2000,

the last left-running characteristic did not yield all the streamline information all

the way up to the boundary layer edge location at Sta. 2000. As a result, the

last station at which all the streamline information was available was Sta. 1852.

Figure 5.18 shows the thrust loss as a function of iterations for A/A* = 1852.53

and 1267.22. The last A/A* was close to the former exit area ratio of 1293. It

must be noted that the tolerance between the second and third iteration is one lb.

for both stations. The thrust information is given in Fig. 5.19 where the inviscid

thrust from TDK, thrust loss from BLIMPJ for the last iteration and the resulting

actual thrust are plotted.

One can already observe the ineffectiveness of the nozzle in producing more

thrust beyond A/A* = 1293. To quantify this thrust increase with area ratio,

Fig. 5.20 was prepared showing change of thrust from station to station as a

function of area ratio. It is very clear that beyond A/A* = 1852.22 where the

change of thrust from its previous station is about 15 lbs., no more appreciable

thrust gain will be realized by further extending the nozzle. The zero location of

this plot was not obtained for the following reasons:

1. It was not possible to run beyond A/A* = 1852 at tLEMTECH's VAX be-
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o

.

cause of space limitations.

Since the inviscid thrust increases by extending the nozzle in a conical fash-

ion, and the thrust loss also increases because of higher displacement effects

with running length, the total thrust may be asymptotic in nature. This

must be considered a conjecture at this point.

On the other hand, if the nozzle were extended in a cylindrical fashion, the

inviscid thrust should level off and the viscous losses should increase, thus

resulting in negative change of thrust from station to station. This has not

been exercised at this point.
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$!

$! The following is a set of jcl to execute the TDK, BLIMP! and NWPI until

$! a solution is found ( i.e. thrust loss for a given model is less
$! than 20 ibs )

$!
$! Note: All text to the right of an "!" is to be considered a comment

$!
$! D. Hollman

$! REMTECH Inc.

$! 29-APR-88

$ SET DEF DSAI:[HOLLMAN.TDK] ! Move to current directory
$
$ WRITE SYS$OUTPUT " I. START AT BEGINNING"!

$ WRITE SYS$OUTPUT " 2. START AT BLIMP!3" ! Output menu to user
$ WRITE SYS$OUTPUT " 3. START AT NWPI" !

$ WRITE SYS$OUTPUT ""

$

$ INQUIRE/NOPUN CHOICE "ENTER CHOICE -->" ! Get input from user
$ WRITE SYS$OUTPUT "" !

$ IF CHOICE .EQ. 1 THEN GOTO START .' If user selects "i", start at beginning

$ INQUIRE COUNT "ENTER ITERATION NUMBER -->" ! Get starting iteration number
$ IF CHOICE .EQ. 2 THEN GOTO BLIMP! ! Start at BLIMP!

$ IF CHOICE .EQ. 3 THEN GOTO NWP ! Start at NWP

$
$ START :

$
$ COUNT = 1 !

$ OPEN/WRITE FILE ITER.DAT ! Output current iteration number to "ITER.DAT"
$ WRITE FILE ''COUNT' !

$ CLOSE FILE !

$
$ BLIMP!:

$ CLOSE ITER.DAT

$ UNLOCK ITER.DAT

$ Pl = "BLM ITER''COUNT'.OUT" ! Assign iteration dependent filenames to

$ P2 = "AVGZPRESS_ITER''COUNT'.PLT" ! average pressure and BLM ITER

$ ASSIGN "THRUST_LOSS_ITER''COUNT'.PLT" FOR072 ! Output thrust loss data
$ ! to unit 72

$ WRITE SYS$OUTPUT "ITERATION =''COUNT'" ! Notify user of progress
$ WRITE SYS$OUTPUT "EXECUTING BLIMP! ..."1

$ @dua0:[eng_codes.tdk]b3 'PI 'P2 ! Execute BLIMP! code
$ DEASS FOR072 $

$
$
$ NWP:

$ COUNT1 = COUNT + 1

$ COPY RADIUS2.DAT BNDRY ITER'COUNT.DAT ! Copy radius information to bndry
$ ! layer file

$ ASSIGN "AVG PRESS ITER''COUNTI'.PLT" FOR071 ! Assign iteration dependent

$ ASSIGN "BNDRY_ITER''COUNT'.DAT" FOR020 ! average pressure and boundary layer
$ i files to FORTRAN unit numbers
$ WRITE SYS$OUTPUT "EXECUTING NWP ..."

$ RUN NWPI ! Execute NWP code

Figure 5.2: VAX JCL for Coupling Software
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$ DEASS FOR071 ! Deassign FORTRAN unit numbers

$ DEASS FOR020 !

$
$ ! IF NWP HAS DECLARED THAT ANOTHER ITERATION SHOULD BE DONE, THEN GOTO ITER

$ OPEN/READ FILE ITER.DAT ! If NWP code declares we should stop, it will

$ READ FILE Pl ' write an "-I" in "ITER.DAT". This routine will

$ CLOSE FILE , stop when condition is true.

$ IF Pl .EQ. "-i" THEN GOTO EXIT

$
$ ITER:

$ COUNT = COUNT + 1 ! Increment iteration counter

$ OPEN/WRITE FILE ITER.DAT ! Output iteration number to "ITER.DAT"

$ WRITE FILE ''COUNT'

$ CLOSE FILE

$ GOTO BLIMPJ ! Goto BLIMPJ section and repeat process

$
$ EXIT: ! Stop excecution

$

Figure 5.2: VAX JCL for Coupling Software (Concluded)
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Section 6

EXPERIMENTAL FEASIBILITY STUDIES

6.1 Background

It is the opinion of the authors that the boundary layer flow in liquid rocket

engines has not been adequately investigated experimentally to make available flow

field data of good quality for guiding code development and for code evaluation

for this class of flows. In the region close to the nozzle wall_ viscous effects are

significant. The losses due to the momentum decrement at the wall because of

viscous effects are referred to as boundary layer losses. These can be calculated

by using such codes as Boundary Layer Integral Matrix Procedure - JANNAF

Version (BLIMP J) and Boundary Layer Module (BLM). Systematic measurements

to verify the calculated boundary layer losses hardly exist, and the ones that exist

are associated with a high degree of uncertainty. Therefore, experimental data

of high quality suitable for boundary layer code validation in such applications

as the effects of wall surface roughness, relaminarization, solid particles in the

boundary layer, and thick boundary layer effect in high area ratio nozzles such as

those being considered for the future Orbit Transfer Vehicle (OTV), are currently

needed. The objective of this effort is to provide basic considerations for measuring

boundary layer losses and to guide the test engineer in selecting the appropriate

type of test_ the parameters to be measured, necessary test facility_ and required

instrumentation with associated operation complexity.

The first section of the experimental feasibility studies focuses on identifying

the potential measurements which directly relate to parameters in the input or

output of the relevant computer code, the relationship between the measurement

and associated parameter, direct measurement_ if possible_ and measurement loca-

tion in the thrust chamber. Measured parameters needed for data interpretation

are vacuum thrust, flow rates_ pressures, enthalpies, compositions, temperatures,

velocities, and turbulent quantities. These parameters are usually combined into

meaningful performance parameters such as specific impulse (Isp), exhaust proper-

ties and boundary layer properties. The above information has been summarized

in charts and tables to make it easily accessible. The recommendations given here

are based on the ideas given in Ref. [26]. Considerations were given to cold flow,

hot flow, reactive flow, scaled model, full size configuration, small or large area

ratio nozzles, hot wall, controlled heat transfer, etc. The results from these tests
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will provide the best data for verification of the analytical model.

6.2 Identification of Potential Boundary Layer Measure-
ments

Both the data analyst and the test engineer must realize that the parameters

of interest may not always be measured directly, but instead may be measured

indirectly and related to the parameter through an analytical procedure. It should

further be noted that the parameters of interest cannot always be measured directly

at the location of interest. In the case of boundary layer losses, they could be

measured directly by probing the boundary layer, thus providing an alternative to

quantify the boundary layer losses.

The boundary layer losses in the thrust chamber are a result of losses in the

available thrust caused by transfer of momentum and heat to the wall. In most

rocket engines, these losses are more significant than the other losses described in

Ref. [26]. Especially in engines, which utilize high area ratios to achieve a higher

specific impulse, these losses might even be a higher percentage of the total losses.

In order to characterize the losses, it is necessary to gain insight into such

aspects as the flow field, heat transfer, mixture ratio, gas composition etc. in the

thrust chamber. The various parameters used in the boundary layer code, both in

its input and output sections, could be measured. If direct measurements of these

parameters are not possible, then certain related measurements should be made,

and the parameters determined from the measurements via appropriate analytical

procedures.

In order to understand the flow field and chemistry of the hot gas in the nozzle

boundary layer, several auxiliary measurements are usually made. In addition to

making direct thrust measurements, other quantities such as mixture ratio, com-

bustion chamber pressure, total enthalpy, wall temperature, pressure distribution

along the wall and geometry of the thrust chamber, which simulate the input pa-

rameters to BLIMP J; and such quantities as heat transfer to the wall, velocity

and temperature profiles in the boundary layer, turbulence in the boundary layer,

and exhaust gas composition, which simulate the output of BLIMP J, need to be
measured.

Potential errors in measurement are indicated when:

* Wall temperature measurements are significantly different from predictions.

• Wall heat fluxes are significantly different from BLIMPJ predictions.
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• Total heat load from the boundary layer is significantly different from BLIMPJ

predictions.

• Boundary layer composition, temperature, pressure, and velocity profiles nor-

mal to the wall are significantly different from BLIMPJ predictions.

* The measured boundary layer thrust (or Isp) loss is quite different from

BLIMPJ math model predictions.

When these discrepancies are indicated in the measurements, the sources of

error may lie in:

• Computation of wall temperature profile

• Starting point of the boundary layer

• Non boundary layer heat losses

• Mixture ratio and mass distribution

• Gas transport table look-up properties being incorrect

* Nonuniformity of pressure in the boundary layer, as evident in thick bound-

ary layer situations.

• Presence of chemical kinetic effects in the boundary layer

• Friction and heat transfer correlations (turbulence model)

• Engineering assumptions made in computing boundary layer losses

The updated performance code (BLIMP J) parameters to be measured, mea-

surements necessary to relate to these parameters and measurement locations are

summarized in Table 6.1.

Boundary layer losses are a regular feature of all nozzles. It is obvious from the

literature that for a moderately large area ratio nozzle, the boundary layer losses

will be significant. It is expected that as the area ratio increases, these losses will

also grow.

Major concerns in setting up this test are:

• Using air only at moderately high temperatures (T __ 300°F) in the chamber

to avoid reaction between N2 and 02.
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Using an inert gas such as argon, freon, etc. which does not react when heated

to a high temperature

Avoiding nozzle flow separation

Test duration - In short duration testing it is hard to measure thrust by a load

cell. Also, it is more difficult to probe the boundary layer. In long-duration

testing, however,

1. Scaling problems are alleviated.

2. More than one measurement per run can be made.

3. High altitude simulation requires a very large facility.

4. Depending on the nozzle size and test duration, cost can be a factor.

Some of the key data that can be obtained from such tests are:

• Boundary layer loss measurement

• Heat transfer effects on the nozzle wall

• Boundary layer probe measurements in the nozzle - An example is the tests

by Back and Cuffel [11].

6.3 Test Facilities

The validation of the turbulence models suggested in this report against mea-

sured data would make them very powerful for future rocket nozzle design. Ta-

ble 6.2 gives a short list of test facilities available around the country which may

be used for reactive full-scale or sub-scale nozzle flow testing.

The roughness model was validated in this report against data measured with

the 60°-15 ° half angle conical nozzle and gave reasonable correlation. However,

problems remain with the validation at the nozzle throat region. The full-scale

or large-scale reactive firing engines as shown in Table 6.2 are not easily tested

for wall roughness, whether uniformly or variably present in the nozzle. A labo-

ratory experiment with hot gas (preferably air) as the flowing medium and with

multiple nozzle geometries containing roughness must be designed to fully test the

turbulence models. In addition, a variety of roughness elements with a variety of

roughness densities, which provides a range of "equivalent sand roughness," should

be implemented for a complete validation.
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A similar argument is also put forward to test the relaminarization module.

The relaminarization module developed by Nash-Webber [12] was very extensively

tested at the MIT Gas Turbine Laboratory. He used variable nozzle geometries

to create the required acceleration parameters. Unfortunately, he used only adia-

batic wall conditions, thus giving only a partial answer to a very complex problem.

The combined effects of roughness and relaminarization were tested by Reshotko

et al. [6], whereas some relaminarization effects were observed by Back and Cuf-

fel [11]. Again, laboratory-type experiments are suggested to thoroughly and sys-

tematically quantify the effects of high acceleration parameters on wall heat flux

and skin friction. A set-up like that of Nash-Webber where a variety of acceleration

parameters were imposed by using a flexible-wall nozzle contour is suggested.

The turbulence model to include the effects of particle presence in the boundary

layer is far from complete since hardly any validating tests exist in the literature

for rocket nozzle flows. Particle generators producing known-size particles need to

be designed. The particulate concentration needs to be measured in the bound-

ary layer using the available optical technology to enable the engineer to validate

against measured data.

The thick boundary layers which affect the nozzle performance may best be

measured in the altitude test facility at LeRC [27] and other facilities to quan-

tify the thrust decrement for comparison with computations. The details of the

boundary layer flows, however, must be measured in laboratory experiments using

LDV, fiber-optics and other available non-intrusive systems, or using conventional

probes.
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Table 6.1: Boundary Layer Losses

Parameters in

Boundary Layer

Code

Potential Measurements

Relating to the

Parameters and Boundary

Layer Loss

Relationship between

Measurements and

Parameters

INPUT PARAMETER

Mixture ratio -

O/F

Combustion chamber

pressure, Pc

Edge gas total

enthalpy, Ho

Wall enthalpy, Hw

Gas transport

properties

Pressure distri-

bution on the wall

Geometry of the
thrust chamber-

combustion chamber,

converging/

diverging nozzle

Wall roughness, if

present - may also

develop in the whole

or parts of the

chamber wall while

in operation; equi-

valent sand roughness

Particle or conden-

sation (two-phase)

effects - particle size

Cold flow tests

(Conventional)

Combustion chamber

wall pressure

Raman scattering

techniques

Wall temperature and

Cp from thermocouple
tables

Not measured -

JANNAF tables

Wall pressure

Drawing; measured
area for either short

or long duration

testing

Roughness density,

roughness profile data

Particle density and

particle size

Same as parameter

Simplified method for

Pc', given in Ref. 1

Combustion temperature

equal to edge gas

temperature and temp-

erature related to

enthalpy

Hw = CcTw

Used in BLIMPJ

Same as parameter

Same as parameter

Same as parameter;

equivalent sand rough-
ness is related to

roughness parameters by

expressions given in

Ref. 4

Same as parameter

Location

Mixing region

aft of injector

Combustion

chamber wall

Combustion

chamber

Nozzle

Nozzle wall

Nozzle wall

Particle gen-
erator and

nozzle exit

plane
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Table 6.1: Boundary Layer Losses (Concluded)

Parameters in

Boundary Layer

Code

Potential Measurements

Relating to the

Parameters and Boundary

Layer Loss

Relationship between
Measurements and

Parameters

Location

Mass flow rate

through the nozzle
throat

Heat transfer rate

at the wall

Velocity and temp-

perature profiles in

the boundary layer

Turbulent length

scale and turbulent

shear stress vari-

ation in the bound-

ary layer

Exit plane velocity

Exhaust gas

temperature

composition

Thrust loss

ISP loss

INPUT PARAMETER

Feed systemFeed system measure-

ments

1. Thermocouple

measurements

2. Heat transfer gage

3. Phase change

4. Calorimetric

measurements

Fiber optic based

LDV

LDV

Fiber optics

Nonintrusive studies

such as radiometric

Load cell (strain

gas measurement)

Calculated from the

feed system measure-

ments

1. Thin-skin or thick-

skin relationship

2. Same as parameter

3. Time-dependent

4. Temperatures related
to heat transfer rate

Same as parameter

Turbulent fluctuation

quantities related to

Reynolds shear stress by
standard methods. From

this shear stress, by

length scales can be

derived and compared

against BLIMPJ
turbulence models

Same as parameter

Calculated from

radiometric measure-

ments

Thrust loss = ideal

thrust - measured

thrust

A ISP = AT/CnTThrust loss and mass

flow rate

Nozzle wall

Nozzle boundary

layer profiles

Nozzle boundary

layer profiles

Nozzle exit

plane

Nozzle exit

plane
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Table 6.2: Representative Existing Test Facilities

Facilities Test Set-Up Advantages and Limitations

NASA LeRC

Rocket Nozzle

Test Facility

(RETF)

Diffuser provides

pressures from

0.03 to 0.05 psia

• Altitude simulation possible

• 1030 Area Ratio Nozzle

• Area Ratio Variable - Flanged

Joint existing at 430 area ratio

• Another nozzle with 1.4 area ratio

also exists.

Engine Test • SSME Nozzle • Fixed Nozzle Geometry - SSME

Facility at MSFC • Subscale • Altitude Simulation not possible

Engine Test • Altitude simulation possible

Facility at AEDC • Very expensive facility
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Section 7

INSTRUMENTATION

7.1 Background

The previous section dealt with the measurements necessary for verification of

the boundary layer code, BLIMPJ. These measurements will be useful only if the

accuracy of the measuring instruments is within the required range. The document

prepared by Praharaj and Palko [26] identified the various instruments, most of

which were intrusive in nature, and gave typical manufacturer specification and

their quoted accuracies. While selecting an instrument, the cost vs. accuracy

tradeoff must always be considered. Either cost or accuracy may be compromised

depending on the objective of the test. This section deals with both dynamic and

static measurements. The dynamic measurements include velocity vector, turbu-

lent quantities, pressure, temperature, and species concentration. These measure-

ments are made with LDV systems, fiber optic sensors and laser Raman scattering

technique. On the other hand, the static measurements, which are mostly intrusive

in nature, have been described in detail in Ref. [26] and will be only summarized
here.

7.2 Dynamic Measurements

7.2.1 Velocity Vector and Turbulent Quantities

7.2.1.1 2-D and 3-D Laser Doppler Velocimeter Systems

The most common scientific application of laser instrumentation is as a Doppler

velocimeter in studies of fluid dynamics. The principle of this technique is based on

the detection of the "Doppler" shift (named after the Austrian physicist who first

considered the phenomenon in 1842) of laser light scattered from small particles

moving with the medium (either natural or added) by a stationary photodetector.

The technique has the potential of complete linearity between transducer response,

which is directly related to Doppler frequency shift, and the particle velocity. In

contrast, other transducers, such as the hot-sensor and the pitot-probe systems,

are only approximately linear within limited ranges. The major advantages of the

laser Doppler velocimeter are:
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• It does not disturb the flow since no physical probe is inserted into the

measuring medium.

• It is not subject to damage by fluid environment.

• No flow calibration required, no drift.

• It has high spatial and temporal resolution with fast response.

• Instantaneous multi-component, bi-directional measurements can be made.

• Operation is not affected by temperature, density and composition changes

in the fluid.

For the measurement of fluid velocity dynamically, the hot-sensor (hot-wire or

hot-film anemometers) performs less well in highly fluctuating flows, particularly

at low mean velocity. The sensitivity of the sensor to more than one velocity

component causes measurement errors that are not easily compensated. The mea-

surement of reversing flow velocities, of course, cannot be detected with a single

probe. These problems may in principle be eliminated by employing moving hot-

sensors which is the equivalent of the frequency shift in laser Doppler velocimeter

systems. However, the method still implies insertion of a probe into the flow, and

the flow disturbances can introduce serious errors, especially in the measurement

of thin boundary layers and fluctuating components of fluid velocity.

Although the laser Doppler velocimeter technique is a very powerful research

tool, it is not a general replacement for other techniques, since optical access is not

always possible or available, and the equipment for the system is expensive. The

laser Doppler technique has, however, proven to be valuable in study of separated

flows, variable property flows, flows within blade rows in rotating machinery, low

velocity flows, liquid flows, combustion and flames, high turbulence intensity flows
and flows with recirculations.

In considering the laser Doppler velocimeter technique for flow measurements,

conditions under which the measurements are carried out need to be fully con-

sidered. Also, it is of vital importance to know whether the system will satisfy

the measurement requirements, or what the optimum system needs to be in order

to meet all the requirements. The prime concern should be focused on the flow

measurement region and its accessibility for laser beams either through optical

windows or through transparent sections.

To study the flow problem in a subscale rocket engine, a two-color, three-

component, dual-beam, Bragg-diffracted (vectorized) laser Doppler velocimeter

(LDV) system (Fig. 7.1) may be utilized. This system can be developed based on
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the complexity of internal viscous flow and the fluctuating fields in the rocket's

combustion chamber and nozzle. The system arrangement for the LDV consists of

six major subsystems: the light source, the optical system, the traversing mecha-

nism, the particle generator, the signal processor and data processor. For details

of these and other items, references such as [28], [201 and [30] may be used. The

associated measurement errors are discussed in the following paragraphs.

At the present stage, the value of the laser Doppler velocimeter as a useful

measuring technique is well established. The applicability of the system to widely

different flow problems shows the potential capabilities of the technique. However,

as with any flow diagnostic tool, the laser Doppler velocimeter system can introduce

some uncertainties and errors into the measurement. In general, the potential

sources of measurement error may be categorized into five areas: (1) Optical system

errors, (2) multi-measurement biasing, (3) signal processing measurement errors,

(4) aerodynamic uncertainties, and (5) statistical uncertainties. For completion of

the 3-D LDV system analysis all these error sources are discussed and ways that

were taken to avoid or correct them are presented in this section.

The optical system errors consist of the cross beam angle measurement un-

certainty and the uncertainty in the parallelism of the fringes in the measuring

control volume. The uncertainty in the measurement of the intersection beam an-

gle is dependent upon the precision with which the angle is measured. The fringe

distortion occurs when two Gaussian beams do not intersect at the waist (the lo-

cation of the narrowest part of the beam). If the beams intersect correctly in the

waist region, the fringes are truly parallel, but when the intersection occurs before

or after the waists, a set of diverging fringes is generated. In this case, particles

passing through the control volume perpendicular to the optical axis, but at dif-

ferent positions will produce Doppler signals of different frequency even if their

velocities are identical. Thus, the degree of parallelism of the fringes is dependent

upon the distance between the focal point of each Gaussian laser beam and the

probe volume location.

The multi-measurement biasing is due to the Bragg bias error, which is based

on the fact that since the Bragg cell causes the fringe pattern to move in the probe

volume, it is possible to obtain multimeasurements from the same seed particle as it

passes through the volume. However, this bias can be eliminated by using a Bragg

cell, the frequency of which is large compared to the signal frequency and also, by

time averaging rather than particle averaging of the data. Another possible error

due to the Bragg cell is the detection of directionality in the velocity measurements.

At points in a flow where particles can occasionally cross the control volume in a

negative direction, the stationary-fringe LDV measurements will be biased since

the sign of the velocity cannot be distinguished in a stationary-fringe system. This
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negative velocity biasing can be corrected by using a moving-fringe vector (Bragg

diffraction) LDV system.

The measurement errors due to the burst counter processor include filter cut-

off bias and incomplete signal bias. Filter cut-off bias is based on the realization

that when the signals from some moving particles in the measuring volume are

lost due to filters in the processing system, the set of measurements will be biased

because all lost signals will be at one end of the velocity histogram. This error

can be reduced if the counter type processor is built with wide frequency response.

Incomplete signal bias is due to the particles which pass through the probe vol-

ume without crossing the required number of fringes. Since these particles have

low velocity components and sometimes zero velocities in the measured direction

(normal to the fringes) their rejection by the processor will result in a biased set of

measurements. However, this bias can be easily eliminated by using a vector LDV

system. There are other possible electronic error sources such as clock synchro-

nization error which is due to the timing mismatch of the signal frequency and the

reference clock, quantizing error and truncation error that should be considered in

the flow measurements.

The aerodynamic uncertainties due go particle response to the flow field con-

sist of uneven seeding bias, multiple particle bias, and particle acceleration bias.

Uniform distribution of particles throughout the flow is essential for correct and

successful measurement of the fluid velocity distribution at a point. Nonuniform

particle size distribution in the flow can introduce some errors in the measured

mean-velocity because the large particles normally do not follow the flow as weU

as small particles (particle lag). Furthermore, as the seeding density increases there

is a possibility that more than one particle will tend to traverse the probe volume

simultaneously. Thus, the signal from first particle is more likely to be rejected

(while it is being processed) because a second one has entered the probe volume
and therefore the set of measurements will be biased. These error sources can be

nearly eliminated if a properly designed laser seeding generator is used and also

by using a signal validation circuit in the counter type processor which is capable

of rejecting signals from multiple particles and signals from highly accelerating or

decelerating particles in the probe volume.

Statistical uncertainties need to be considered since the measured quantities

(e.g., mean, standard deviation, etc.) are statistically determined from an average

of velocity measurements. In nozzle flow investigation, all statistical errors can be

removed by applying a time-averaging method where all the data are weighted by

the amount of time elapsed between each particle arrival. This requires that time

as well as velocity data be taken.
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7.2.1.2 Fiber Optic Based Laser Doppler Velocimeter System

Currently, there is a strong demand for reliable experimental data to evalu-

ate the important parameters used in describing and predicting the nozzle flow

behavior. A better understanding of the mechanisms occurring in the viscous noz-

zle flows will allow practicing engineers to optimize and/or design more efficient

thrusters. Detailed studies of the nozzle flow require suitable measuring techniques

to provide practical information of interest. Measuring techniques which require

sampling probes to be located at the measuring point are unacceptable in the

nozzle because they may result in unwanted disturbance and possible sample er-

rors. The employment of non-intrusive methods, such as the noncoherent light and

sound waves directed across the flow field, can only provide integral information

which is difficult to interpret since strong variations can occur along the light or

sound paths. Due to these difficulties, optical methods based on laser and fiber

techniques seem very appealing to determine the nozzle flow characteristics.

To satisfy the above requirements, an advanced two-component laser Doppler

velocimeter system and fiber optic sensors are proposed to be designed and de-

veloped for simultaneous measurements of two-dimensional local velocity vector,

pressure, and temperature in the nozzle flow fields. These measurements are ex-

pected to provide accurate and valuable information about the nozzle flow fields.

The application of the laser and fiber optics to measurements in a highly com-

plex flow such as the combustion chamber or nozzle of a rocket engine, requires

innovative approaches due to the constraints inherent in the measurement tech-

nique. The laser velocimeter concept allows for the measurement of gas dynamic

velocity by the sensing of the Doppler shift in laser light that has been scattered

by particles moving with the gas. The measurement is direct in that the particle

velocity and Doppler frequency shift are proportional to each other. The propor-

tionality constant consists of the laser wavelength, A, and the geometrical orien-

tation of the laser velocimeter optical system or the angular relation between the

incident laser light and the scattered light. Fiber optic sensors offer several signif-

icant advantages over conventional sensors. Their high sensitivity and exceptional

signal-to-noise ratios can deliver performance more traditional approaches cannot

match. They offer geometric flexibility and immunity to electromagnetic interfer-

ence and hostile environment conditions. Fiber optic sensors of many types can

be developed. Generally, they are categorized as amplitude- or phase-modulated

optical devices. While some fiber sensors are highly sophisticated, others are ele-

gantly simple. Regardless of their complexity, they all employ similar components

and utilize common operating principles. They typically exploit changes in the

intensity (amplitude), polarization or phase of light propagating in the fiber. Sub-

tle perturbations of the geometry, length or refractive index of a fiber or coupling
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between fibers can provide innovative ways to measure physical phenomena such

as velocity vector, temperature or pressure. Thus, the basic measurement require-

ments for the laser Doppler velocimeter and fiber optic sensors are: (1) a coherent

light source such as a laser with suffcient power to shine light into the measuring

field of interest, (2) the transmitting (focusing) optics to transmit and direct the

laser beams into a small and well-defined measurement region or probe volume,

(3) the receiving optics to collect the scattered light generated by the natural or

artificial particles present in the flow and direct it to the signal detectors, (4)

single-mode or multimode optical fibers, (5) photodetectors with sufficient signal

gains to convert coherent light signal to electrical signal, (6) a signal processor to

convert the electrical signal to a voltage proportional to velocity, temperature or

pressure, and (7) a computer or other similar data reduction system to allow for

computation and/or analysis of the data for the desired information.

The optical configuration of the recommended fiber optic based laser Doppler

velocimeter system is illustrated schematically in Fig. 7.2 for the nozzle flow veloc-

ity measurements. For the practical application of the laser Doppler velocimeter

system, a small and low-cost, commercially available, air-cooled He-Ne laser, which

delivers 30 mW of stable power output, can be used as a light source. The laser

emits a red light of 632.8 nm wavelength and operates in the uniphase TEM00

(Transverse Electromagnetic Mode) having a Gaussian radial beam profile. A

beam collimator is used to control the beam divergence for the LDV optical sys-

tem. In order to measure the two orthogonal components of local velocity in the

same probe volume simultaneously, it is necessary to generate two superimposed

sets of interference fringes. This is accomplished by applying the dual-beam optical

frequency preshifting technique and employing a single two-dimensional ultrasonic

Bragg cell modulator as shown in Fig. 7.2. The Bragg cell functions as both the

beam splitter and the frequency shifter. The collimated laser beam is passed into

the Bragg cell's optical quality window and four equally intense beams are pro-

duced. The two red pairs of beams operating at a single wavelength (632.8 nm) are

frequency shifted by the Bragg cell driver with carrier frequencies of 25 and 15 MItz

representing the x- and y-components of velocity vector, respectively. Thus, fre-

quency differences in orthogonal beam pairs are 15 and 25 MHz. The four parallel

red beams then are focused to a common measuring point by a set of achromatic

transmitting lenses. The common measuring point of probe is composed of two

superimposed sets of interference fringes as shown in Fig. 7.3. The interference

fringes are produced by the intersection of the two pairs of vectorized laser beams

where each region of intersection is used to measure one orthogonal component of

velocity. Two photodetectors are employed to convert the collected scattered light

into an electrical signal. A block diagram of the signal processing electronics is

presented in Fig. 7.4.
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The fiber optic LDV system, shown in Fig. 7.2, can be used for the nozzle flow

measurements in small or restricted spaces. The system is immune to electrical

noise and reduces the potential for damage to the laser from hostile measurement

environments. The fiber optic probe can be positioned inside or outside the flow

and maneuvered easily using a simple traversing arrangement. Because the probe is

highly maneuverable, the measuring volume can be repositioned simply by moving

the probe, rather than by moving the complete LDV system.

7.2.2 Pressure and Temperature

7.2.2.1 Fiber Optic Pressure Sensor

A simple and rugged fiber optic sensor based on a reflecting Fabry-Perot in-

terferometer for the remote measurement of the nozzle or combustion chamber

pressure is shown in Fig. 7.5. The system consists of one fixed mirror and a second

mirror which moves under the action of the pressure being monitored. A single

multimode fiber is used to connect the passive, remote sensor to the transmit-

ter/receiver section. The potential advantages of fiber optic pressure sensors over

conventional types are well known and include: immunity to electromagnetic inter-

ference, intrinsic safety in hazardous environments due to their electrically passive

nature, and the convenience of remote sensing over low attenuation optical fiber.

7.2.2.2 Fiber Optic Temperature Sensor

Figure 7.6 shows the configuration of a radiometric temperature measurement

using infrared optical fibers. A combination of an optical fiber and a radiome-

ter permits remote temperature measurements in the rocket engine environments.

Energy emitted from the measuring point is focused by a lens onto one end of an

IR fiber, transmitted through the fiber, and detected by a remotely located IR

detector. The function of the detector is to convert the detected radiation energy

into an electrical signal.

7.2.3 Species Concentration and Temperature

7.2.3.1 Laser Raman Scattering Technique

The laser velocimeter inherently provides velocity vector and associated turbu-

lent quantity information. The Raman technique provides measurements of local

static density (species concentration) and temperature and is not flow direction
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sensitive. Both techniques offer local "point" measurements. Combined, these

techniques offer the potential of local nondisturbing simultaneous measurements

of the three basic gas parameters, i.e., velocity, density, and temperature, necessary

to define the thermodynamic state of the fluid.

When a beam of monochromatic light traverses a gas mixture, the resultant

scattering phenomenon involves both the elastic and inelastic interactions of the

photons with the gas molecules. The elastic interaction results in Rayleigh scatter-

ing, whereas that caused by the inelastic interaction results in Raman scattering.

The Raman scattered radiation consists of radiation in which the energy, and

therefore, the frequency, has been changed by an amount characteristic of the en-

ergy differences between the stationary energy states of molecules it encounters.

The shift can result in an increase in energy, and subsequent increase in frequency

(Anti-Stokes Line), or a decrease in energy and subsequent decrease in frequency

(Stokes Line), of the scattered radiation. This frequency shift is a unique char-

acteristic of the scattering molecules and is independent of the frequency of the

incident radiation. Therefore, the individual species present in the gas mixture can

be uniquely distinguished by monitoring the frequencies of the scattered radiation.

Not only can one distinguish between the different species comprising a gas mix-

ture, but, by measuring the intensity of each component of the scattered light one

can determine the temperature and concentration of each diatomic or polyatomic

species in the mixture.

Excitation at both the Pump frequency, WL, and the Stokes frequency, Ws

is required, necessitating the use of the laser sources. Since Raman spectra are

obtained by scanning the difference, WL - Ws, one of the two lasers must have

frequency-tunable output. Since the CARS (Coherent Anti-Stokes Raman Spec-

troscopy) signal scales as P_Ps, high laser powers are desirable and pulsed lasers

are almost always used in CARS. Fairly tight focusing, 50 to 200-#m-diameter

spot size, of the laser beams also is generally used.

7.3 Static Measurements

7.3.1 Wall Pressure and Temperature

There are three sets of static measurements desired in the combustion chamber

and nozzle of a rocket engine during a reactive test: (1) pressure distribution, (2)

temperature distribution, and (3) heat transfer rate. Numerous details of various

sensors are given in Ref. [26]. The most important of these sensors are discussed
below.
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The combustion chamber pressure can vary from 10 psia to 5000 psia depending

on the type of rocket engine and fuel used, and the location of the pressure orifice

can vary from behind the injector face to near the nozzle throat. For a hot gas

simulation test, the pressure should be measured at several locations along the

chamber wall starting just aft of the injector face and ending just forward of

the start of contraction. The specifications for a series of high accuracy pressure

transducers that cover the range of normal combustion chamber pressures are given

in Fig. 7.7. The measurement of the combustion chamber temperature during the

hot gas simulation testing can be made with a standard high temperature probe

of similar design as those used in the stilling chamber of a hypersonic wind tunnel

where temperature measurements of 1500°F may be required. Another option is

a sapphire black body optical fiber thermometry system that has an accuracy of

0.2 percent at approximately 4000°R. The specifications for this probe are given

in Fig. 7.8.

The nozzle design for the hot gas simulation model should be such that static

pressure orifices and thermocouples can be located along the nozzle wall starting

as near the throat as possible and continuing at moderate intervals to the exit.

The specification for a pressure scanner that could be used to measure the nozzle

static pressures is given in Fig. 7.0. This particular pressure transducer system

quotes an accuracy of 4-0.10 percent on full scale. Normally chromel-alumel ther-

mocouples are used for the temperature measurements, although most of the basic

thermocouple types could be used. The temperature measurements could also be

measured using the optical fiber thermometry system as shown in Fig. 7.8. The

accuracy of the temperature measurements is normally the accuracy of the curve

fit used to convert the thermocouple millivolt output to degrees.

7.3.2 Heat Transfer Rate

The heat flux can be obtained from calorimetric measurements by measuring

the chamber coolant temperature (cryogenic fuel when used as the coolant or water

in the case of hot gas simulation) at various stations along the coolant passages

and then using the AT of the coolant, mass flow of coolant, and C v for coolant

from a thermodynamic table to calculate the heat flux. Since the heat-transfer rate

along the nozzle wall is one of the output parameters

it is very desirable to have an accurate measurement

be difficult to measure the heat transfer rate using the

in the boundary layer code,

of this parameter. It would

thin skin technique and it is

difficult to determine the accuracy of the calorimetric method, therefore, it would

be better to design the hot gas simulation model so that heat flux transducers

could be used to measure the heat transfer rate. The specification of a heat flux

transducer is given in Fig. 7.10.
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7.4 Recommendations

Although the static measurements are simpler to design, less expensive and

more readily installed, a combination of static and dynamic measurements should

be tried. These measurements should also be made on full-scale, sub-scale and

laboratory scale rocket nozzles in order to validate the appropriate turbulence

models. A tradeoff of cost vs. accuracy must be considered while designing the

test model and the required instrumentation. If one were starting to conduct the

experimental validation of the modules coded in this report, it will be recommended

to start with (1) laboratory models with static measurements and work upward

with (2) sub-scale and full-scale models with static measurements, and (3) sub-

scale and full-scae models with dynamic measurements.
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Figure 7.3: Fringe Pattern in the Measuring Volume Produced by Crossing Laser

Beams in the Differential Doppler Technique and a Typical Doppler

Burst-Detector Signal
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Figure 7.5: Typical Configuration of a Fiber Optic Remote Pressure Sensor
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Figure 7.6: Fiber Optic Configuration for Infrared Temperature Sensing
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Miniature ESP5c.anners

PRESSURE
SCANNERS

Pressure System_ line of pres-
sure scanners are tr ansducer per
port electronically scanned in-
struments designed for multiple
pressure measurement applica-
tions where high data rates and
accuracy are paramount_ These
Dressure scanners incorporate sil-
;co, pressure transducers, internal
multiplexing and amplification with
an integral calibration valve.They
are designed to accurately measure
pressures of dry, non-corrosive
gaseous media. Several configura-
tions are available,all fully compat-
ible with the 780B Pressure
Measurement System.

MINIATURE
The ESP Pressure Scanner line

is designed to offer miniature high
transducer density modules which
satisfy applications where spaceis
critical as in wind tunnel model
testing. All ESPscanners interface
to the 780B Data Acquisition and
Control Unit using the Scanner
Interface Modules.

RACKMOUNT
The $1600, $1600D and

S3200 Pressure Scannersare rack
mounted instruments for use in
test stand applications where
_neumatics can be brought to a

central location. These scanners
feature complete field repairability
down to the transducer level and
include front panel quick discon-
nects of all input pressures.
EleCrical interface to the DACUis
provided by the Scanner Interface
Rackswhere all pneumatic and
electrical connections to the pres-
sure scanners are automatically
mace once secured in the rack.

Rackmount Scanners

ESP
Scanners

I ESP.I ESP-IESP-1 ESP-I ESP.I ESP-
_6rL13zrL I 3z 1 3zsLI 48 I _esL

INPUTS 16 32

RANGE : 1-100 -,-1-100

STATIC
ERROR =0.10 =0.I0

SCAN
RATE 20,000 20.000

TRANSDUCER 7.6 7.6
DENSl ,TY

32 32 48 48

=1-100 =1-100 =1-100 _-1-100

_-0.10 ±0.10 ±0.I0 ±0.10

20,000 20,000 20,000 20,000

7.1 8.9 10.7 13.4

CHANNELS

PSID

%ES.

READINGS/SEC

TRANSDUCER/IN

CHANNELS

WC

t' PSID

%ES.

READING/SEC

Rack
Scanners

51600 SI600-D $3200

INPUTS 16 16" 32

RANGE _- 10" = 10" _-L-t0"
500 1O0 250

STATIC
ERROR ±0.10 _-0.10 _-0.10

SCAN 20,000 20,000 20,000
RATE

FIELD YES YES YES
REPAIRABLE

DENSITY
PER19"RACK
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192 CHANN ELS

"SI600-D are True Differential :

Price Range: $150 to $200 per channel (Basic Transducer)

Figure 7.9: Example Specifications for High Accuracy Miniature Pressure Scanners
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series HEAT FLUXTRANSDUCERS
DESCRIPTION OPERATING PRINCIPLES

MEDTHERM 64 Series Heel Flul Transducers offer dependable

direct measurement of heat transf_ rates in a variety of epDIW:a*

t0ons due to careful design, ru_KJeO ouelity construction and

v_r_ltde mounting cnnhgurallOn. Each transducer will provide a

self-ganerated 10 mB_l_voll outC_u_ al the design heat flux level.

Cont*nuous readings from zero to 150% design heal flux ere

mode with _nhnlte resolution The Iransduce_ output is directly

proDort*onal to the nel heal transfer r3te ablorbed bv the sen-

sot EaCh Iransduce, is provided with e Cer[ifled calibration

traceable through temperature standards IO the Nat*onal Bureau

of Stand_fds These tranIOucers have been 0roven in thousands

of appIw_ot0ons in aerosDoce opphcat*ons, heat transfer research,

and bo*let design.

FEATURES

• LINEAR OUTPUT

• OUTPUT PROPORTIONAL TO HEAT TRANSFER RATE

• ACCURATE. RUGGED. RELIABLE

• CONVENIENT MOUNTING

• UNCOOLED WATER COOLED GAS PURGED MODELS

• RADIOMETER AND LIMITED VIEW ACCESSORIES

• MEASURE TOTAL HEAT FLUX

• MEASURE RADIANT HEAT FLUX

• REMOTE MEASUREMENT OF SURFACE TEMPERATURE

CONSTRUCTION FEATURES

ACCURACY. RUGGEDNESS AND RELIABILITY are provid-

ed by the ¢horc, ug_ly proven Gardon and Schm_t.Boelter sen-

SOrL

LONG TRANSDUCER LIFE AND SIGNAL STABILITY are

enhanced by the rear.ire body of pure copoer, gold Dialed to

protect agolnst corrosion, contain=nation, and excet$ radiant

heat abtorphon by the heat sink.

PROTECTION AGAINST ROUGH HANDLING in mounlmg =l

provided by i stainless slee_ flange when SD_cifieO.

SIGNAL INTEGRITY _s orotgcslcI by the use o1 welded con-

nections, stranded lead wire with braid_l cooper shielding and

teflofl insulation firmly secured =n the trenSCiucer body w*th

strai_ relief to er;sure res.SlanCe to rough handling erld stray

slgnalL

ACCESSORIES

REMOVABLE SAPPHIRE WINDOW ATTACHMENTSere and-

able to limit the basic tranr_Jcer to mealuremen! of rad*atlon

heat flux ordy.

VIEW RESTRICTOR ATTACHMENTS ate |reliable to limit

the angda of v=ew for Ihe bas=¢ transducer to 600, 30o, 1S _, or

7 o Ior narrow view angle measurements.

DIRECT READING HEAT FLUX METER Model H-200 is

=vadal_e for d_fect reeler reaC_out in any heat flux units from

any linear heal fiux transduce_ indus. A 0-1 vC_l recorder out,

put iselso prOwd_. Ask for Bulletin 700.

BODY TEMPERATURE THERMOCOUPLE measurement is

Dro_Oe_ by an OPt=oriel tuG,oar constantan _0 AWG sohd con-

ductor IhermocouDle, TIC welded junctmn, with fiberglass *n-

lulation and metalh¢ overbre=d.

The 64 Sertas transbucer$ ere of two b_$¢ sensO_ IyDes, the

'GarOon Ivpe (5 io 400(_ BTU/ft2-U¢) an¢_ the Schm*_-Boelter

thermoDile type (0.2 to S BTUIft2u¢). In Poth ty_ serlsors

P,eat fluu _S abso_t)ecl at the sensor surface and is transferred to

an _nle_ral heat sink v_h¢h rema*ns el a temperature below lh_t

of the sensor tu_l_ce. The difference in temperature between

two points elo_ the Dat_ ol the heat tlow from 1he sensor to

the sink =Sprooortional 10 1he heal being transferred, end. there-

fore proOortro_l to the heat flux betng ab_orbe_. At two such

Doants, MEDTHERM tranr_ucers have thermocouDle )unCtions

_<h form a dlffeten|=al thermoel_ctr=¢ clrcu*l prowdmg • self-

generated ernf Petween the two OUtput leads directly propor-

tional to the heat trensfe*r rate. No reference lunClion _ needed.

Gardon Gauges absorb heat in & thin metallic circular foil enO

transfer the heat rad_lly (parallel 10 the absorbing su_fece) tO

the heat sink altached el the periphery of the toil; the d=fterence

in temperature IS taken between the center end edge of the foil.

.¢_::hm_l.Boetter geugeS abs_)rb the heat e! one surface and trans.

ftp' the heat m a direction normal 1o the absorPlng surface; the

d.fterente _n temperature =s taken between the surface and e

Dtane beneath t.e surface.

OPTIONAL FEATURES *nclude four mounting configurations.

_ler coohng provls=ons, gas purge provisions, or thl_mo¢ouples

for body temperature meat,_Jrlmlent. Water cooJi_g should be

spec_fled _f the unCooled transducer ts expected to reach aDo_

400OF.

The gas purging p_owsion should be included on rad_atton trans-

ducers to be used =n a Sooty enwronment. The MEDTHERM

_Jrga _S dt_rgned tO paSS r_g_d NASA performance teStS with

fuel.r_ch oxy.atetylene flames d=recteO toward the w_ndow at

close r•nga.

STANDARD CONFIGURATIONS

The _s=c lrJnsducer may be selected t_,lth ellhet of four mount-

ing ¢onflgur_lt=on$ 0nd _,,th o_ _lthO_Jt D_OwSlOr_ for water

Joohng of transducer bO<:ly. II may also be orov*ded _lh gel-

• out purging tO keep ille rad_ehon-transmltt_ng window clean.

t:x_t ,Nhen the pu_ging p, OvlSlOn is incluOed, the window is in-

stal_ed and _s not an accessory.

RADIOMETER WITH GAS PURGING PROVISIONS

t- _i'_:=_!,;,':'____'_"::!...... ,;- _'-7 F___'-":..__::

Figure 7.10: Example Specifications for Rapid Response Heat Flux Transducers
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The four e_ilabi! mounting configurations are illustrated below There is the smooth t)oOy _th flange, the threaded body with fbnge, me

Imooth body without flange, and the fhr caged body w_fhout flange. All mouhtlng flanges •re 1.75" de•. wltt_ .150 '° d_i. mounting holes equal-

hf _g_ced on • 1.38" die. bolt circle Water cooling tubes [v_nen specified) ere. 1tB" die. stainless [feel and gas purge tubes are 1/B" clia stem

less steel. All tubes are T" long. The IhreaOe@ trans0ucer bodies are 1-T2 UNF.2A thre_s.

i-- 1" --_

SMOOTH BODY WITH FLANGI

VERSION MODEL NO.

BASIC.

NO COOLING 64-xx-16

WATER

COOLED 64-xx-20

RADIATION,

PURGED

COOLED 64P.xx-24

-- 1"'-1

2-= ,-

tHREADEDBODY WITH FLANGE

VERSION MODEL NO.

BASIC,

NO COOLING 64-xx-17

WATER

COOLED 6,4-xx-21

RADIATION.

PURGED

COOLED 64TP-x x-25

i--.1"-I

/

_: 22

;MOOTH BODY. NO FLANGE

VERSION MODEL NO.

BASIC,

NO COOLING 154-xx-14

WATER

COOLED 64-xx-IB

:_ADIATtON.

PURGED

COOLED 64P-xx-22

_-- I" -- I

rHREADED BODY, NO FLANGE

VERSION MODEL NO

BASIC,

NO COOLING 64.xx-lS

WATER

COOLED 64-xx-19

RADIATION,

PURGED

COOLED 64TP-x x-23

SAPPHIRE WINDOW ATTACHMENT may be _Kfded for elim,-

net_on of cof_vectNe heat tr'4nsfer, thus n'_kmg the transducer a

radiometer or red_ltiOn heat flux trans@ucer. Three view •ngles

ere •veilal_e: 90 O. 120 O, 0nd 150 O. Windows ere re.movable

•nd replaceable by user. When the winclow iS used the _l_nsitivity

of the basic stlnT4_lucer is re_lucecl to • nominal frection of the

origmel •s follows: 90 O, 43%: f20o° 64%; 150 O, 79%. Thick-

r_SS of the ittichmef_t vari¢_ with vie'_ at_gle •nO sens_ tyPe

from 1/16" to 3/8".

J_-='-=-'::- BODYSTY,E"'o"CALIB'MODEL1
THREADED .84 NO SW.2.YY

I

_VlO 0T H 1,0 YES S_.1C.YY |
f

THREADED .84 YES SW-2C.YY I

I
VIEW RESTRICTOR ATTACHMENTS for limlting the •tee

view or seen by the sensor ale _ometime_ desire(J fo, making

r_d_t_on o¢ remo_e ten_ger_tu_e me.asurernent$.

VIEW NOMINAL _ BASIC MODEL

ANGLE "A _ SENSITIVITY NO.

7 ° 3.9" .4% V R-7

15 2.3 1.7 VR-15

30 1.6 6.6 VR-3O

60 1.2 _.0 VR -60

SPECIFICATIONS

RANGES AVAILABLE: 4000. 3000, 2000. 1000. 500, 200,

100. 50, 20, 10. S, 2, 1. 0.2 BTU/ft2-se¢. design hilt flux

level.

OUTPUT SIGNAL: 10 milfrvo_ts .+ 1.5 millNOItl It furl rinoj_.

MAXIMUM ALLOWABLE OPERATING BODY TEMPERA-

TURE 400OF.

OVERRANGE CAPABILITY: 150% for 5-2000 BTU/t12-se¢

r_r_; 500% fo_ 0.2-2 BTUItI 2 sec r=nges.

MAXIMUM NON-LINEARITY: __>_ of full range

. REPEATABILITY! + 1/2%

AC:URACY: .+3% for most ranges

CALIBRATION: C_rldiKI cahb_ition prov_Oe¢t with each tra_

duc_r.

SENSOR ABSORPTANCE 92%. nom,n_l, from 0.6 to 15.0

microns.

SPECTRUM TRANSMITTED BY SAPPHIRE WINOO_V (When

used}: S5% nominal from O.IS to S.0 microns.

LEAD WIRE" 24 AWG strar_cle_ CO_Der. twoconductor, teflon

insulation ove_ ezch, metallK: Overbraid, teflon Overall. 36"

Io_g, SlrlD_*d fftrtds.

RESPONS E TIME (63.2%h

500 to 4000 BTU/ft2t_c: _ than 50 msec.

_0 to 200 BTU/f¢2sec less [hen 100 mr_c.

5 to 20 BTUIh2sec k_SS then 290 msec.

0.2 tO 2 OTU/h2sec; less than 1500 msec.

SENSOR TYPE

S to 40(X) BTU/ft2sec: Ga_0on Gau_e

0,2 to 4 STU/h2sec _chm,dl- Boeive_

NOMINAL IMPEDANCE

LI_ than 10 ohms on G*_rcion Gauges

Less that_ 100 ohms on _(:_m_dt-Bo_lte¢ Gauges.

Amount of hl_t which c&n _ at:_sorL_ by tran_ucer in an

_heba_ (peHectly insulale_ thenllatlyl II',st•llahon belore e_-

_ed_ng the 400OF I.'n_ta_o_

Models without woler cooi*ng IDrOvl$_OrtlL: 6.2 BTU

Models _llh t_llt_f ¢ooIin_ _rot¢_$1Ol_ _ul wllhOul v_0ter m

_lmges: 4.2 BTU.

Mex_ffltw_n gas pressure for go_ _,urgecl models 1_0 p$_g.

Figure 7.10: Example Specifications for R, apid l{esponse Heat Flux Transducers

(Concluded)
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APPENDIX

SUMMARY OF MODIFICATIONS TO THE
TURBULENCE MODELS AND ADDITIONS OF

ENGINEERING MODELS IN BLIMPJ

WALL SURFACE ROUGHNESS EFFECTS

The Cebeci-Smith turbulence model given in Ref. [11 was modified in Ref. [3]

using the formulation of Cebeci and Chang in Ref. [7] to include the effects of wall

surface roughness. The expression for mixing length given by

l=0.4y{1-exp(-y/A)}

is modified and rewritten as

t=0.4 (y+Ay) [1-exp{-(y+Ay)/A}]

where the coordinates are displaced by an amount A y. A y is expressed as a

function of an equivalent sand-grain roughness parameter K + ( =_ Ks Ur/v), i.e.,

This expression is valid for 4.533 < K + < 2000, with the lower limit corresponding

to the upper bound for a hydraulically smooth surface.

This report considered multiple smooth/rough surfaces, where, for smooth sur-

faces, Ks was set to zero and, for rough surfaces, Ks was set equal to the appro-

priate values.

Reference [3] also included the following engineering options to calculate skin

friction and Stanton Number for rough surfaces.

Skin friction compressibility (Young)

ci_- 0.365 _ + 0.635
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Incompressible rou6h wall skin friction

Option (1) Prandtl-Schlichting

C]/= [2.87 + 1.58 log10 (z/k)]-2"5

Option (2) Droblenkov

Cli = O.O139(:r/k) -1/7

Rough surface turbulent Stanton Number (Seidman)

St= I+A (Re_) °'45 (pr)°'s ] -

where A = 0.52 nominal and range from 0.45 to 0.7 (Owen & Thompson), and C!

is obtained from the first equation given.

Transition Criterion (Fenter)

r/k
p,,,U_.k ! CI Pe

where U_ = Ue A
2 pw

r/k < 5, Smooth

5 <_ r/_ < 100, Transitionally rough

100 < _k, Rough

RELAMINARIZATION EFFECTS

Eddy viscosity, era, in any of the three algebraic eddy viscosity models in Ref. [1]

and this report is varied with acceleration parameter, K, from a turbulent em (ref)

value to a value of zero for completely laminar flow according to

- K1 (ref)

where K is given by
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K = -fiw due

-Pw U_ dx '

the lower limit, K1, is given by

K1 = aR 2 + bR + c

where a = 8.935 x 10 -14

b = 2.239 × 10 -l°

with c given by

c = 0.27

= -0.27

where

X 10 -6, K_. <: 0.8 x 10 -4

x 10 -6 + 0.676 x 10 -2 Kr,

0.8 x 10 -4 < K_ < 4.1 x 10 -4

= 2.5 x 10 -6 , K, > 4.1 x 10 -4

and the upper limit, K2, is given by

K2 = 0.7 x 10 -6 , K,_ 0.8 x 10 -4

= -0.245 x 10 -6 + 1.182 x 10 -2 g,.,

0.8 x 10 -4 < Kr < 4.1 x 10 -4

= 4.6 x 10 -6,Kr :> 4.1 x 10 -4

EFFECTS OF CONDENSED PHASE

The ratio of particle diffusivity to eddy diffusivity is given by

1D--7 - -A--_E ki'_'2 + O A--_E
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where I =

,2 >I/2

A L -- D t
< u/2 >1/2

and AE = 6 (= local boundary layer thickness)

The eddy diffusivity, D I (-- eD), is calculated in BLIMPJ.

Assuming the turbulent Schmidt Number to be constant between clean flow

and flow with particles,

SC -- -- --

p -- _D

from which the eddy viscosity, &, for the particulate flow is obtained as

ep Cop

e fD

Reference [3] also included the following engineering options to calculate skin

friction and wall heat transfer rate for particulate flow.

Laminar Boundary Layer (Marble)

C! = C f o Vff + K /(l+0.4oKA---v/---z_ A--L_<< 1
I+K J ' z\

= _o v/_+ K /[1+0.49K__/_ A_y__<<and 1
I+K]' z\

where K = Pp/Pe

q

6_ape
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Turbulent Boundary Layer

For w---a < 1 (Tien)wf

c: = C:o (: + Z5)

and 4 = _o(: + Z5)

_ c_w_
where _5 -

c:w:

For w---a > 1 (Farbar and Morley)w1

Nu = 0.:4R_, o._ (w,,/w:)O.,_

But, Nuo "- 0.023 (RED) °'s • pr °.4

4

Particle Factor = Nu/Nuo
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